Moel-y-Gaer (Bodfari)
A small hillfort in Denbighshire, North Wales

Gary Lock

With contributions by John Pouncett, Derek Hamilton, Michael J. Allen, Alan J. Clapham, Simon Callery, and Stefan Gant
Contents

List of Figures and Tables ... ii
Acknowledgements ... v
Introduction ... 1
Survey ... 6
 John Pouncett
Excavation ... 11
Environmental ... 88
 Michael J. Allen and Alan J. Clapham
Radiocarbon dating and chronological modelling 97
 Derek Hamilton
The Spindle whorls ... 102
Discussion ... 105
Conclusion ... 116
Artists in residence ... 118
Community involvement .. 124
References ... 125
List of Figures and Tables

Figure 1. The location of Moel-y-Gaer (Bodfari), Denbighshire, and the six hillforts within the Heather and Hillforts Project... 2
Figure 2. Moel-y-Gaer (Bodfari) viewed from the north... 3
Figure 3. Ordnance Survey earthwork plans of Moel-y-Gaer (Bodfari), A) 1880s, B) 1964. ... 4
Figure 4. LiDAR image of Moel-y-Gaer (Bodfari). .. 6
Figure 5. Mean curvature derived from LiDAR data with topographic survey overlain (red = convex slope, blue = concave slope). ... 7
Figure 6. Topographic survey of Moel-y-Gaer (Bodfari), overlain on LiDAR, showing contours. ... 7
Figure 7. Magnetometry data overlain by the hachure survey... 9
Figure 8. A) Resistivity data (Twin 0.5), B): resistivity data (Double-Dipole), both overlain on hachure survey ... 10
Figure 9. The location of excavation Trenches 1 to 6... 11
Figure 10. The location of Trench 1 on an artificially levelled platform, looking north towards the inturned entrance... 12
Figure 11. The magnetometry survey showing details of Trenches 1 and 2. 13
Figure 12. Trench 1: the location of the roundhouse, the excavated areas and the main contexts. ... 14
Figure 13. Trench 1, SEQ, slot 3: the cobbled surface (1016). ... 15
Figure 14. Trench 1, SEQ, slot 3: view of the cobbled surface (1016) from the north................................. 16
Figure 15. Trench 1, SEQ, slot 3: the eastern-facing section showing context (1017)................................. 16
Figure 16. Trench 1, SEQ: the western facing section.. 17
Figure 17. Trench 1, SEQ: possible roundhouse wall material, (1064) against the cut back bedrock face. ... 18
Figure 18. Trench 1, NWQ: an area of the possible compacted roundhouse floor surface, (1052)... 18
Figure 19. Trench 1, SEQ: a section through the possible hearth (1051) in the centre of the roundhouse. ... 19
Figure 20. Trench 1, SEQ: east facing section showing the possible hearth (1051)................................. 19
Figure 21. Trench 1, NEQ, slot 2: the eastern facing (top) and western facing sections showing the main contexts. ... 20
Figure 22. Trench 1, NEQ, slot 1: boulders and bank viewed from the north. 21
Figure 23. Trench 1, NEQ, slot 1: boulders and bank, top plan view, bottom section view. ... 21
Figure 24. Trench 1, NEQ: the stone bank.. 22
Figure 25. Trench 1, NEQX: one of the stone courses of bank material, (1057), the top of revetting stone (1099) is to the left... 23
Figure 26. Trench 1, NEQX: the stone bank.. 23
Figure 27. Trench 1, NEQX: one of the revetting stones (1099) at the rear of the bank... 24
Figure 28. Trench 1, NEQX: the stone bank with revetting stone (1099)... 25
Figure 29. Trench 1, NEQX: posthole (1086) at the rear of the stone bank......................... 25
Figure 30. Trench 1, NEQX: posthole (1086) at the rear of the stone bank......................... 26
Figure 31. Trench 2: fully excavated showing the three cut features identified by geophysical survey, viewed from the north... 26
Figure 32. Trench 2: the main features.. 27
Figure 33. Trench 2: section of cut feature (2002), a possible pit. .. 28
Figure 34. General view of Trenches 3E, 3B, 3G and 3D looking south over the Chwiler valley towards the Clwydian Range... 29
Figure 35. The location and layout of Trench 3.. 30
Figure 36. Trench 3G with 3D background right, viewed from the north............................. 31
Figure 37. Trenches 3F, 3D and 3G: the main features... 31
Figure 38. Trench 3D: posthole (3017).. 32
Figure 39. The view downslope towards the Phase 2 rampart from the Phase 1 rampart, now destroyed. ... 33
Figure 40. Trench 3X: north facing section... 34
Figure 41. Trench 3X: orthophoto of the north facing section, see Figure 40 for scale.......... 34
Figure 42. Trench 3X: the Phase 2 rampart outer face (3500). ... 35
Figure 43. Trench 3X: the Phase 2 rampart outer face (3500). ... 36
Figure 44. Trench 3X: foundation stones, the Phase 2 rampart outer face.......................... 36
Figure 45. Trench 3X: chocking stones, the Phase 2 rampart outer face.............................. 37
Figure 46. Trench 3X: the Phase 2 rampart outer face... 37
Figure 47. Trench 3X: detail from the orthophoto of the north-facing section. The outer face of the Phase 2 rampart at centre right with rubble core to the left including laid large flat stones immediately behind the face... 38
Figure 48. Trench 3X: the outer face (3500) and Sub-Phase 2A inner face (3041) of the Phase 2 rampart. 39
Table 1. List of bulk samples processed with context information......................... 89
Table 2. Assessment of charred plant and charcoal remains. Key: \(?C = 1-5; rw = Roundwood. \)
Analysis: \(C = \) charcoal; \(P = \) charred plant remains......................... 90
Table 3. List of hand-picked charcoal samples ordered by context......................... 91
Table 4. The charcoal samples chosen for radiocarbon dating................................ 92
Table 5. The considered age range of the selected charcoal items......................... 93
Table 6. Charred plant remains identified from sample 6.12, context 6038 (* submitted for radiocarbon dating)... 94
Table 7. The radiocarbon dates... 97

Figure 98. The inturned northern entrance viewed from the interior, the western interturn to the left, behind the figure, is much higher than the eastern to the right................................. 73
Figure 99. Enhanced LiDAR plot of the northern inturned entrance (top right) showing ramparts in red and the large quarry hollow inside the northern rampart (blue).................................. 74
Figure 100. Trench 6: bedrock (6001) in the entrance passage showing signs of erosion due to traffic. ... 74
Figure 101. Trench 6: the main contexts. ... 75
Figure 102. Orthophoto of Trench 6 nearing the end of excavation............................. 80
Figure 103. Trench 6: the Phase 1 rampart as shown in Slot 1.. 76
Figure 104. Trench 6, Slot 1: the Phase 1 rampart inner face (6040)............................... 76
Figure 105. Trench 6, Slot 1: the Phase 1 rampart inner face (6040), section view............ 77
Figure 106. Trench 6: north facing section of Slot 1 showing the Phase 1 rampart inner and outer faces. .. 77
Figure 107. Trench 6, Slot 1: the Phase 1 rampart outer face (6033)............................. 78
Figure 108. Trench 6, Slot 1: the disturbed Phase 1 rampart fill (6036), removed from the front of the rampart face to the west.. 79
Figure 109. Trench 6: overview from the north-west showing the trench under excavation. Slot 1 is to the left containing the Phase 1 evidence, and the Phase 2 interturn with entrance passage is to the right.. 80
Figure 110. Trench 6, Slot 1: Phase 2 possible revetting wall (6032):.............................. 81
Figure 111. Trench 6: Phase 2 interturn walls, A) (6026), B) (6023).................................. 82
Figure 112. Trench 6: orthophoto of Phase 2 interturn wall (6026), 1 m grid lines.............. 82
Figure 113. Trench 6: the hooked terminal end of the Phase 2 interturn....................... 83
Figure 114. Trench 6: the terminal end of the Phase 2 interturn..................................... 83
Figure 115. Trench 6: orthophoto of the terminal end and posthole (6031) of the Phase 2 interturn. ... 84
Figure 116. Trench 6: the terminal end and posthole (6031) of the Phase 2 interturn from the south. .. 85
Figure 117. Trench 6: the posthole (6031) pre-excavation.. 86
Figure 118. Trench 6: the posthole (6031) post-excavation.. 85
Figure 119. Trench 6: the laid surface (6019). .. 86
Figure 120. Trench 6: surface (6016) to the south of the Phase 2 interturn.................... 87
Figure 121. Chronological model for the dated activity at Moel-y-Gaer (Bodfari). Each distribution represents the relative probability that an event occurred at some particular time. For each of the radiocarbon measurements two distributions have been plotted, one in outline, which is the result of simple radiocarbon calibration, and a solid one, which is based on the chronological model use. The other distributions correspond to aspects if the model. For example, ‘end: Moel y Gaer, Bodfari’ is the estimated date that activity ceased at the site, based on the radiocarbon dating results. The large square ‘brackets’ along with the OxCal keywords define the overall model exactly.. 98
Figure 122. Span of the primary hillfort activity in the model shown in Figure 121 100
Figure 123. A. Photographs taken of the two spindle whorls during excavation.............. 102
Figure 124. Earthwork plan showing the possible first phase univallate enclosure (red), phase 2 (black) and the post-medieval landscaped enclosure (green). ... 107
Figure 125. Simon Callery at work, Moel-y-Gaer (Bodfari), July 2015. © Simon Callery. All Rights Reserved, DACS/Artimage 2021.. 119
Figure 126. Simon Callery: Country Register. 2018. © Simon Callery. All Rights Reserved, DACS/Artimage 2021................................. 120
Figure 127. Stefan Gant at work, Moel-y-Gaer (Bodfari). © Simon Callery 2019................ 121
Figure 128. Stefan Gant: Phygital Palimpsest at Oriel Plas Glyn y Weddw. © Stefan Gant 2019................................. 122

Table 7. The radiocarbon dates. ... 97
Acknowledgements

John Pouncett was co-Director during the fieldwork with special responsibility for the surveys and photogrammetry. Survey and excavation at Moel-y-Gaer (Bodfari) has been made possible by the enthusiasm, generosity and support of many people who we would like to thank: the landowners; Fiona Gale (previously of Denbighshire County Council); Will Davies (CADW); Jonathan and Alice Bacon for hospitality and Jude Brown (chief cook and bottle washer). The work was funded by grants from the Denbighshire Area of Outstanding Natural Beauty Sustainable Development Fund, the Cambrian Archaeological Association, The Prehistoric Society (James Dyer Award), the Robert Kiln Trust, the Council for British Archaeology (Mick Aston Award), the Society of Antiquaries of London, the Marc Fitch Fund and private donations. Members of the Hillfort Study Group have provided many useful comments, especially Graeme Guilbert. Finally, thank you to the excavation ‘core’ team of Paul Reilly, Paula Levick, Simon Maddison, Pete Robertson, Christine Markussen, John Gibbs, Eric Harkleroad, Richard Coe, Matthew Stevenson, Jon Humble, Guus Lange, Debs Young, Lisa Brown, Linda Richards, Sally Taylor and Owen Kearn together with the many volunteers who have participated over the years. Also thanks to the two artists in residence, Simon Callery and Stefan Gant, for adding a whole new dimension to the work and to Floss Wilkins, Paula Levick, Sally Taylor and Pete Davenport for the drawings.

This report is dedicated to Jon Humble, a good colleague and friend who is greatly missed.
Introduction

The Clwydian Range in North Wales provides a spectacular upland landscape that contains a series of well-preserved Iron Age hillforts (Gale 1991; Brown 2004). These have been little studied and are poorly understood other than mainly through the pioneering work of the Heather and Hillforts Project run by Denbighshire County Council.¹ This had the broad ranging objectives of landscape and heritage management to encourage public understanding and participation in outdoor activities including archaeology. It concentrated on six hillforts within the Clwydian Range and Dee Valley Area of Outstanding Natural Beauty (AONB):² Penycloddiau, Moel Arthur, Moel-y-Gaer (Llanbedr) and Moel Fenli in the Clwydisans and in the adjoining Llantysilio Mountains the sites of Moel-y-Gaer (Llantysilio) and Caer Drewyn, Figure 1. Topographic survey was carried out at each site together with differing levels of geophysical survey (Mrowiec 2011; summarised in Lloyd-Jones 2017 and Lloyd-Jones and Gale 2020).

The importance of hillforts is central to the understanding of the north Welsh Iron Age settlement record and has been emphasised for some time within a series of research agendas (Haselgrove et al. 2001; Gwilt 2003; IFA Wales/Cymru 2008), the latest version of which has recently been published online.³ To stimulate continuing research in this area the Heather and Hillforts Project actively encouraged collaborative work which has resulted in a series of excavations and further survey. Geophysical survey has been carried out within the interior of Caer Drewyn by the Universities of Oxford and Bangor (Brown and Wintle 2008) and its environs including the small enclosed site of Moel Fodig (Karl and Brown 2010; Brookes 2010b). This was followed by further survey and excavation at Moel Fodig (Morton Williams et al. 2012) and survey at a second small enclosure, Fron Newydd (Brown and Karl 2011). Small-scale excavations were also carried out by the Universities of Bangor and Vienna to investigate the rampart at Moel-y-Gaer (Llanbedr) (Karl and Butler 2009). A single trench was excavated within the interior of Moel-y-Gaer (Llantysilio) by the Clwyd Powys Archaeological Trust in 2010 (Grant and Jones 2013). From 2012 a longer term project was carried out at Penycloddiau by the University of Liverpool with geophysical survey and excavations across the rampart and of a house platform in the interior (Mason and Pope 2012; 2013; 2015; 2016). Excavation on the slopes of Moel Arthur has taken place by CRAG (the Clwydian Range Archaeological Group).⁴

Moel-y-Gaer (Bodfari) is just north of the Heather and Hillforts project area and was not included in that work. With the encouragement of the landowners and after discussion with CADW and Fiona Gale of Denbighshire County Council, it was decided to carry out a campaign of survey and excavation that would help to incorporate the site into the wider research schemes described above and add to the growing corpus of information about the area. From the outset it was decided that Moel-y-Gaer (Bodfari) provided an opportunity for a relatively large-scale excavation compared to what has been carried out so far on Clwydian hillforts, and also as a testbed for the integration of a range of non-intrusive remote sensing techniques. Consequently, in the summer of 2011 topographic and extensive geophysical survey combined with morphometric analysis of LiDAR data was undertaken followed by seven seasons of excavation.

Moel-y-Gaer (Bodfari)

Bodfari is the lowest of the Clwydian hillforts at c. 200m, positioned outside the village of Bodfari, 5 miles north-east of Denbigh in the northern Clwydian Range (NGR SJ 0950 7080). It is situated

² For details of all hillforts mentioned in this paper, including references, see the Atlas of Hillforts of Britain and Ireland, online at https://hillforts.arch.ox.ac.uk (accessed December 2021)
³ https://www.archaeoleg.org.uk/intro.html (accessed December 2021)
⁴ https://cragnorthwales.wordpress.com/ (December 2021)
Figure 1. The location of Moel-y-Gaer (Bodfari), Denbighshire, and the six hillforts within the Heather and Hillforts Project.
on the top of a discrete hill, Figure 2, strategically located overlooking the confluence of the Rivers Chwiler (Wheeler) and Clwyd with an enclosed area of c. 2ha. The site is a Scheduled Ancient Monument (CPAT HER PRN 102154, FL073) and the work reported on here was done under Scheduled Monument Consent.

The solid geology of the Clwydian Range, including Moel-y-Gaer (Bodfari), is Silurian mudstones and shale, a grey well bedded rock that is prone to shattering when exposed. This is in contrast to the Carboniferous limestone plateau which runs along the eastern side of the Clwydians and to the softer, and now much eroded, Triassic red sandstones of the Vale of Clwyd (Embleton 1957). Moel-y-Gaer (Bodfari) is a northern outlier of the main Clwydian Range separated by the Chwiler (Wheeler or Bodfari) Gap through which the river runs into the Vale where it joins the Clwyd. To the east of the Gap the valley is wider and shallower but the Gap itself is relatively narrow and deep, Moel-y-Parc which flanks the Gap to the south being 335m high compared to the hillfort at c. 200m on the north. The Gap breaks the main watershed of the region and was caused by the Bodfari Fault which runs across the shale outcrop creating a gap which was probably made larger by torsional movements and shattering of the shale during the Triassic resulting in a hollow (Brown and Cooke 1977).

The importance of this for the archaeology of Moel-y-Gaer (Bodfari) is that the Gap was exploited by ice during the last glaciation leaving deposits on the hilltop. Glaciation was severe in this area with two ice sheets meeting, the Welsh Ice from the west-south-west and the Irish Sea Ice from the east-north-east. Other than forming the rounded hill profiles of the Clwydians and the U-shaped cols and valleys, the drift deposits left by the ice sheets took two forms. In essence these tend to be fluvio-glacial deposits and landforms in the valley which are often stratified and the unsorted tills (boulder clays) of the higher areas including the limestone plateau. The natural deposits on the top of Moel-y-Gaer are mainly the red fluvio-glacial sands and gravels which are very variable
Figure 3. Ordnance Survey earthwork plans of Moel-y-Gaer (Bodfari), A) 1880s, B) 1964.
in constituents and structure deriving from the Bunter sandstone deposits in the Vale. There are also occasional patches of boulder clay and erratics of various sizes are scattered across the hilltop, mainly of limestone but of other rock types as well. The gravels are rounded and sub-rounded pebbles of pale grey limestone, siltstone, sandstone and occasional vein quartz and granite. If these deposits were originally laid down in the Chwiler Valley by ice moving through the Chwiler Gap, Peake (1961: 368) has argued that they could have been pushed up to the tops of the hills by ice movement, which may apply particularly to Moel-y-Gaer (Bodfari) as it is relatively low.

Before our survey work in 2011 there existed only a minimal earthwork plan by the Ordnance Survey from the late 19th century and a more detailed plan from 1964, Figure 3, showing the main features to be the western ramparts and ditches and the inturned entrance to the north. The northern entrance was planned and described as turning both inwards and outwards by Forde-Johnston (1976: 229, Figure 129).

Small-scale excavations were carried out within the hillfort in 1908 by Philip Stapleton and students of nearby St. Bueno’s College with ‘advice and direction’ given by Professor J.L. Myers of Liverpool University who visited the site twice (Stapleton 1909: 234). This work was re-iterated by Davies in his corpus of Flintshire (1949). Stapleton excavated ten trenches in total although the exact positions of these are impossible to relocate from his published plan. His most significant and relevant conclusions are from three trenches all focussed on the western ramparts: a possible entrance through the central area of the inner rampart (his Cutting 4, Figure III); the V-shaped profile, ‘6 feet deep’, of a ditch in the north-western area (Cutting 1, Figure II); the rear of a rampart with a stone wall ‘5 feet high’ (Cutting 5), possibly the middle rampart in the central western area. In his conclusion Stapleton referred to the lack of finds, particularly Roman, (1909: 237) which is significant because of the suggestion that Moel-y-Gaer (Bodfari) could be the location of Varae (Varis), the ‘lost’ Roman fort shown on the Antonine Itinerary (Davies 1949: 41). This argument is based on the number of Roman finds from in and around the village of Bodfari, but not from the hillfort, and the place name derivation although the Roman fort in question was probably located at St. Asaph (Silvester and Owen 2003).