Assessing Iron Age Marsh-Forts

With reference to the stratigraphy and palaeoenvironment surrounding The Berth, North Shropshire

Shelagh Norton
Contents

List of Figures and Tables...iv
Acknowledgements ..vii
List of abbreviations ..viii

Chapter 1: Assessing Iron Age marsh-forts – an introduction ...1
1.1. Marsh-forts in a hillfort context ...1
1.2. The ‘problem’ with hillforts, ..2
1.3. The archaeological and ecological opportunities presented by wetlands3
1.4. Structure ...3
1.5. Definitions ..5
 1.5.1. Defining terms ..5
 1.5.2. Chronology ...5
 1.5.3. Radiocarbon dates ...5

Chapter 2: The British Iron Age, hillforts and marsh-forts – Literature Review6
2.1. Summarising Iron Age studies ...6
 2.1.1. Antiquarian and early twentieth-century paradigms ..6
 2.1.2. A ‘New Archaeology’ for the Iron Age ...7
 2.1.3. A post-processual perspective ..8
 2.1.4. Thematic Studies and Agendas ...9
2.2. Iron Age landscapes – hillforts and enclosures ...9
 2.2.1. Inventories, classifications and groups ...12
 2.2.2. Hillfort, enclosure and the implications for settlement12
 2.2.3. Iron Age climatic change and changes in landuse ..13
2.3. Marsh-forts ..14
 2.3.1. Sutton Common ...14
2.4. Summary ..16

Chapter 3: Methodology and Resources ..17
3.1. Site selection – national and regional marsh-forts ..17
 3.1.1. National Level – Marsh-Fort Gazetteer ...17
 3.1.2. Regional Level – North Shropshire’s marsh-forts ...17
 3.1.3. Local level – The Berth and Wall Camp ..18
3.2. The Berth ..18
 3.2.1. Ground conditions and equipment ..18
 3.2.2. Stratigraphic coring and palaeoenvironmental sampling18
 3.2.2.1. Borehole transects ...18
 3.2.2.2. Recovery of organic samples ..19
 3.2.3. Radiocarbon determinations ..21
 3.2.4. Post-fieldwork – processing and analysis of palaeoenvironmental data21
 3.2.4.1. Plant Macrofossils ..21
 3.2.4.2. Coleoptera ...22
 3.2.5. Adopting a multi-proxy palaeoenvironmental approach to landscape reconstruction ...22
 3.2.5.1. Plant macrofossils ..22
 3.2.5.2. Insect remains ...23
 3.2.5.3. Pollen ..24
 3.2.5.4. Combining bioproxies as a multi-proxy/multi-disciplinary method of landscape reconstruction ..26
 3.2.6. Presentation of palaeoenvironmental data ...26
 3.2.6.1. Pollen ..26
 3.2.6.2. Plant Macrofossils ..26
 3.2.6.3. Coleoptera ..27
 3.2.6.4. Habitat groups ...27
 3.2.8. Archival Search ...28
Chapter 8: The Berth – Palaeoenvironmental Reconstruction ... 128

8.1. BNP15 – Berth North Pasture– stratigraphy and taphonomy .. 128
8.1.1. BNP 01, 02, 03A – 500-300cm – circa 13000-8750BP .. 130
8.1.2. BNP-03B – 300-250cm – circa 8750-8300BP .. 133
 8.1.2.1. The arboreal landscape .. 133
 8.1.2.2. Open water/waterside; damp and dry grassland; meadow ... 134
8.1.3. BNP-04 – 250-150cm – circa 8300BP –7100BP .. 134
 8.1.3.1. The arboreal landscape .. 134
 8.1.3.2. Open water/waterside; damp/dry grassland; meadow .. 134
 8.1.4. BNP-05 – 150-120cm – Atlantic climatic period – circa 7100-6300BP 135
 8.1.4.1. The arboreal landscape .. 136
 8.1.4.2. Open water/waterside; damp/dry grassland; meadow .. 136
8.1.5. BNP 06/07 – 120-0cm – Atlantic/Sub Boreal – circa 6300-5000BP 136
 8.1.5.1. The arboreal landscape .. 137
 8.1.5.2. Grassland and open water .. 137
8.1.6. BNP15 – Summary. Human impact during the early Holocene .. 137

8.2. Berth Main Causeway – 3BBMC16 (Kang, 2017) – Early/Mid Bronze Age .. 139

 8.3.1. The arboreal landscape/damp fen .. 140
 8.3.2. Open water/marginal plants .. 141
 8.3.3. Damp and dry grassland .. 141
 8.3.4. Human habitation .. 141
 8.3.5. Berth Trench 1 – Summary ... 142

8.4. Berth Pool (Tigger, 1988) .. 142

8.5. The Berth – Palaeoenvironmental Reconstruction – Summary .. 143

Chapter 9: Assessing Iron Age marsh-forts – Discussion and Conclusions .. 147

9.1. The Berth and Sutton Common – a comparison .. 147
 9.1.1. The palaeolandscape .. 147
 9.1.2. Topography and location.. 148
 9.1.3. Size, morphology, access and orientation ... 149
 9.1.4. Site usage – features and finds .. 149
 9.1.5. Chronology ... 151
 9.1.6. Positioning the Berth and Sutton Common in time and space .. 151

9.2. Marsh-forts in North Shropshire .. 152

9.3. Marsh-forts in England and Wales – supra-regional perspectives and themes 152
 9.3.1. Economic control .. 153
 9.3.2. Landscape patterning and boundary control ... 154
 9.3.3. Control of ceremonial and ritual practice – waterscapes as place of votive deposition 154

9.4. Conclusions ... 156
 9.5. Marsh-forts – a theory ... 156

Bibliography .. 158

Appendix 1 – Radiocarbon dates ... 181

Appendix 2 – Samples weights and volumes ... 192

Appendix 3 – Full species lists .. 194
List of Figures and Tables

Chapter 1
Figure 1.1. Research structure. ... 4

Chapter 2
Figure 2.1. Zones of differing settlement forms ... 11
Figure 2.2. Artist’s impression of Sutton Common ... 15

Chapter 3
Figure 3.1. The Berth – Scheduled Area, large and small enclosures, Berth Pool and field names .. 19
Figure 3.2. BNP 15 – 0-100 cm ... 20
Figure 3.3. BNP15 – 180-220 cm ... 20
Figure 3.4. BNP 15 – 360-460 cm ... 20
Figure 3.5. An indication of the spatial representation available from nested data-sets ... 26
Table 3.1. The Berth – plant macrofossil and beetle samples by location ... 21
Table 3.2. The Berth Coleoptera – MNI: Species ratio .. 27
Table 3.3. Plant macrofossil and insects habitat groupings 28

Chapter 4
Figure 4.1. The Sutton Common landscape .. 35
Figure 4.2. The Atlas of Hillforts – marsh-forts ... 36
Figure 4.3. Distribution of potential marsh-forts – England and Wales 36
Figure 4.4. North/South Yorkshire – distribution of potential marsh-forts around Sutton Common ... 37
Figure 4.5. Moorhouse Farm, Tickhill, showing ditch circuits to the west of the farm buildings ... 38
Figure 4.6. Little Smeaton .. 39
Figure 4.7. Lincolnshire, Fenland and East Anglia – distribution of potential marsh-forts ... 40
Figure 4.8. Tattershall Thorpe .. 41
Figure 4.9. Stonea Camp – upstanding earthworks .. 42
Figure 4.10. Stonea Camp in its flat landscape setting 42
Figure 4.11. Looking east across the salt marsh towards Holkham ... 43
Figure 4.12. Warham Camp – external defences .. 44
Figure 4.13. Central and Southern England – distribution of potential marsh-forts ... 45
Figure 4.14. Cherbury Camp .. 46
Figure 4.15. Kempsey .. 47
Figure 4.16. Gadbury Bank .. 47
Figure 4.17. Risbury Camp .. 48
Figure 4.18. Risbury Camp – interior ... 48
Figure 4.19. Island Covert .. 49
Figure 4.20. Cheshire – distribution of potential marsh-forts 49
Figure 4.21. Peckforton Mere ... 50
Figure 4.22. Oakmere .. 50
Figure 4.23. Somerset Levels and Severn Estuary – distribution of potential marsh-fort and lake villages ... 51
Figure 4.24. Hetha Burn West and Great Hetha .. 52
Figure 4.25. Wales – distribution of potential marsh-forts 52
Figure 4.26. y Werthyr, Anglesey ... 53
Figure 4.27. y Werthyr – geology ... 54
Table 4.1. Sutton Common characteristics ... 34
Table 4.2. Marsh-forts and potential marsh-forts, England and Wales 35

Chapter 5
Figure 5.1. Shropshire – North Shropshire Plain ... 62
Figure 5.2. Core section showing ‘true boulder clay’ ... 64
Figure 5.3. North Shropshire: relief, hydrology and sites 65
Figure 5.4. North Shropshire’s wetlands .. 67
Figure 5.5. Fenn’s/Whixall Moss ... 68
Figure 5.6. Peat wastage at Wall Camp ... 69
Figure 5.7. The Nesscliffe Spoons .. 71
Figure 5.8. North Shropshire’s lowland fortifications .. 73
Figure 5.9. The Berth from the air looking south ... 73
Figure 5.10. Wall Camp – western ramparts ... 76
Figure 5.11. The Weald Moors – superficial geology .. 76
Figure 5.12. Wall Camp – site map and excavations .. 77
Chapter 6

Figure 6.1. The Berth – location map (OS 1:50,000 series; Edina Digimap; January 2018) .. 90
Figure 6.2. The Berth – superficial geology and contour (BGS 1:50,000; June 2017) .. 90
Figure 6.3. The Berth – schematic map .. 91
Figure 6.4. Buckler’s drawing of the Berth .. 91
Figure 6.5. Downman’s schematic of the Berth .. 92
Figure 6.6. The Berth Cauldron ... 92
Figure 6.7. Berth stratigraphy .. 93
Figure 6.8. ‘Slave chain’ and currency bars .. 93
Figure 6.9. Roman glass bead .. 95
Figure 6.10. The Berth/Upper Perry – all sites; superficial geology ... 95
Figure 6.11. The Berth/Upper Perry – all sites; LiDAR .. 96
Figure 6.12. The Berth/Upper Perry – Prehistoric/Mesolithic/Neolithic .. 97
Figure 6.13. Unexcavated burnt mound adjacent to the Berth’s small enclosure .. 98
Figure 6.14. The Berth/Upper Perry – Bronze Age .. 98
Figure 6.15. The Berth/Upper Perry – Iron Age/Undated .. 100
Figure 6.16. The Berth – cemetery, pit alignment, enclosures and field system ... 102
Figure 6.17. The Berth/Upper Perry – Roman .. 103
Figure 6.18. Tetchill Brook – depositionary evidence ... 104
Figure 6.19. Berth Hill ... 104
Figure 6.20. The Berth – Line-of-sight analysis; 97mOD ... 106
Figure 6.21. The Berth – Line-of-sight analysis; 80mOD ... 107
Figure 6.22. The view from the summit of Berth Hill looking west ... 108
Figure 6.23. The North Shropshire Plain viewed from Llanymynech ... 108
Figure 6.24. Hillfort intervisibility .. 109

Chapter 7

Figure 7.1. The Berth contour map .. 111
Figure 7.2. The Berth – superficial geology .. 111
Figure 7.3. The Berth landscape, showing the peat basin and Berth Hill .. 112
Figure 7.4. The Berth – field locations, 2016 and 2017 coring transects, and locations of radiocarbon dated cores ... 112
Figure 7.5. Berth North Pasture – Transects 1 and 2 .. 113
Figure 7.6. Berth North Pasture – Transects 3 and 4 .. 113
Figure 7.7. Berth North Pasture – Transect 5a-5g and Lea Field transect ... 114
Figure 7.8. Berth North Pasture – depth bordering the main enclosure (1c-5c) and the drop off from the gravel spit ... 114
Figure 7.9. Berth South Pasture – east .. 115
Figure 7.10. Berth South Pasture – west .. 115
Figure 7.11. Berth North Field .. 116
Figure 7.12. Berth Main Causeway – cores .. 117
Figure 7.13. Core 3BBMC16 – Windermere Interstadial ... 117
Figure 7.14. The Berth – 2D+ stratigraphy .. 118
Figure 7.15. Natural water flow across Berth North Pasture ... 123
Figure 7.16. Looking from the ramparts across Berth North Pasture ... 123
Figure 7.17. The Berth as depicted on the Megalithic Portal ... 124
Figure 7.18. 1794 Baschurch Parish Map .. 125
Figure 7.19. Berth Pool; contour and variations in the snail/Chara horizon ... 126

Table 7.1. The Berth – radiocarbon results .. 119
Table 7.2. The Berth – chronological multi-plot of radiocarbon dates ... 120
Table 7.3. The Berth – radiocarbon dates grouped by depth and age .. 121

Chapter 8

Figure 8.1. Berth North Pasture – BNP15 – stratigraphy ... 130
Figure 8.2. BNP15 – Pollen analysis ... 131
Figure 8.3. Alder-carr, Worcestershire

Figure 8.4.3BBMC16 – Stratigraphy and dating

Figure 8.5. Mid-Shropshire meres

Figure 8.6. Mid-Shropshire meres – radiocarbon dating

Figure 8.7. Berth Pool II – pollen analysis

Table 8.1. The Berth – Holocene palaeoenvironmental data; chronological coverage and overlap

Table 8.2. BNP15 – Proxy analysis and chronological phases

Table 8.3. BNP15 – Plant macrofossils

Table 8.4. BNP15 – Charred plant remains

Chapter 9

Figure 9.1. Regional traditions of metalwork deposition in the Iron Age and marsh-fort locations
Acknowledgements

The text for this publication has been adapted from a thesis submitted for the degree of Doctor of Philosophy (Landscape and Environmental Archaeology), University of Birmingham, 2019. The project was sponsored by the Midlands 3 Cities Doctoral Training Partnership.

Dr David Smith and Professor Henry Chapman (University of Birmingham) were my supervisors and expert guides throughout my research, and they are owed a special debt of thanks. More thanks go to Gill Campbell (Historic England) and Dr Wendy Smith (University of Birmingham) for teaching me to identify plant macrofossil and wood remains. Dr Warren Eastwood and Richard Johnson (GEES, University of Birmingham) provided fieldwork expertise, and Warren trained me in the use of the Tilia program. Assistance with the identification and analysis of palaeoenvironmental remains from the Berth was provided by Rebecca Eastwood (Graduate, GEES, University of Birmingham) who undertook pollen analysis for sample BNP15, and Yuxiao Kang (Masters Graduate, CAHA, University of Birmingham) who analysed sample 3BBMC16 for beetle remains.

I am also grateful to the staff of Shropshire Council Historic Environment Team, Shropshire Archive and the Portable Antiquities Scheme (Shropshire and Herefordshire) for their provision of HER data and for allowing access to the Peter Gelling Archive, in particular Andy Wigley, Charlotte Orchard, Giles Carey, Penny Ward, Emma Kate Lanyon and Peter Reavill.

Moral support came from colleagues, friends and family, including Dr Andy Howard, Shelagh Hampton and members of the Hillfort Studies Group, whose confidence in my project was unfailing. The families who own the sites researched (at the Berth and Wall Camp) – the Edwards family, Rod Timmis, Mr and Mrs Lea and the Dobson family – are also owed a special thank you for allowing access to their land.

Ultimately though, were it not for my husband Trevor – for his patience, tolerance, love, support and sense of humour! - this research would not have been possible.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Arboreal Pollen</td>
</tr>
<tr>
<td>AHRC</td>
<td>Arts and Humanities Research Council</td>
</tr>
<tr>
<td>BGS</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>BIIS</td>
<td>British Irish Ice Sheet</td>
</tr>
<tr>
<td>BSW</td>
<td>Bog Surface Wetness</td>
</tr>
<tr>
<td>CAHA</td>
<td>Classics, Ancient History and Archaeology Dept., University of Birmingham</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DSM</td>
<td>Digital Surface Model</td>
</tr>
<tr>
<td>DTM</td>
<td>Digital Terrain Model</td>
</tr>
<tr>
<td>EIA</td>
<td>Early Iron Age</td>
</tr>
<tr>
<td>FLO</td>
<td>Finds Liaison Officer</td>
</tr>
<tr>
<td>GEES</td>
<td>Geography, Earth and Environmental Sciences, University of Birmingham</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>ha</td>
<td>Hectares</td>
</tr>
<tr>
<td>HER</td>
<td>Historic Environment Record</td>
</tr>
<tr>
<td>ka</td>
<td>thousand years ago</td>
</tr>
<tr>
<td>LPAZ/PAZ</td>
<td>Local/Pollen Assemblage Zone</td>
</tr>
<tr>
<td>LGM</td>
<td>Last Glacial Maximum</td>
</tr>
<tr>
<td>LIA</td>
<td>Late Iron Age</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>MIA</td>
<td>Middle Iron Age</td>
</tr>
<tr>
<td>MNI</td>
<td>Minimum Number of Individuals</td>
</tr>
<tr>
<td>mya</td>
<td>million years ago</td>
</tr>
<tr>
<td>NAP</td>
<td>Non-arboreal Pollen</td>
</tr>
<tr>
<td>NWWS</td>
<td>North West Wetland Survey</td>
</tr>
<tr>
<td>OD</td>
<td>Ordnance Datum</td>
</tr>
<tr>
<td>OS</td>
<td>Ordnance Survey</td>
</tr>
<tr>
<td>PAS</td>
<td>Portable Antiquities Scheme</td>
</tr>
<tr>
<td>UKRDB</td>
<td>UK Red Book</td>
</tr>
<tr>
<td>SMR</td>
<td>Sites and Monuments Record</td>
</tr>
<tr>
<td>TLP</td>
<td>Total Land Pollen</td>
</tr>
<tr>
<td>UoB</td>
<td>University of Birmingham</td>
</tr>
<tr>
<td>VCP</td>
<td>Very Coarse Pottery (briquetage)</td>
</tr>
<tr>
<td>WHP</td>
<td>Wroxeter Hinterland Project</td>
</tr>
<tr>
<td>ya</td>
<td>years ago</td>
</tr>
</tbody>
</table>
Later prehistoric marsh-forts are amongst the most enigmatic and scarce of British Iron Age structures. These monumentalised enclosures are found in wetlands, and although their settings offer unparalleled opportunities for landscape and palaeoenvironmental research, they have only recently been acknowledged as a site-type, research is extremely limited, and there are no synthesised studies of their form and function. These omissions limit the contribution that these monuments can make to Iron Age studies.

‘Assessing Iron Age marsh-forts’ investigates a number of potential Iron Age marsh-forts from across England and Wales, comparing their similarities and differences with the only marsh-fort so far investigated (Sutton Common, near Doncaster), drawing conclusions from their landscape setting, their morphology, and their chronology. A comprehensive gazetteer is offered which supports the more widespread use of the term ‘marsh-fort’ as a classification for these monuments. The results indicate that marsh-forts and their wetland landscapes are sufficiently different from their hillfort counterparts to contribute new facets to our understanding of Iron Age society.

The focus is narrowed by collating of data from a group of low-lying Iron Age fortifications in North Shropshire, before concentrating on the dual-enclosure, causewayed example of the Berth, near Baschurch, as the subject for extended study. Situated within a low-lying wetland, the Berth combines monumental fortifications with evidence of ritualised metalwork deposition. The case-study presented here charts the evolution of this unique monument through landscape study and multi-proxy palaeoenvironmental analysis.

1.1. Marsh-forts in a hillfort context

The British Iron Age (circa 800BC-AD43) was a period of profound social transformation (Cunliffe, 2005; Haselgrove and Pope, 2007; Haselgrove and Moore, 2007). The ritual hoarding of bronze ceased and metalworking focussed increasingly on the use of iron. Farming and subsistence continued the changes begun in the Late Bronze Age, and land became increasingly enclosed and bounded (e.g. Haselgrove in Hunter and Ralston, 2009:149-174). In some regions, local populations proclaimed their strategic intelligence and territorial claims through the construction of highly visible, rampart-and-ditch fortifications – hillforts. There are in excess of 4000 hillforts in the British Isles (Lock and Ralston, 2017) and whilst they come in a myriad of shapes, sizes and locations, they are conjoined by the monumentality of their architecture and their size.

The functionality of these enclosures has been subject to a range of interpretations which reflect the socially important mores of the day. Between the 1920s and the 1970s, hillforts were thought of as defensive structures, mirroring the Western world’s preoccupation with security and warfare (e.g. Hawkes, 1931; 1959; Wheeler, 1972; Forde-Johnston, 1976; Hogg, 1979; Stanford, 1980). However, from the 1970s/80s onwards, social evolutionary models emphasised hillforts as visible metaphors for power and territorial control (e.g. Bowden and McOmish, 1987; Hingley, 1999; Bowden, 2005; Driver, 2007), and/or as communal centres for gatherings or storage (e.g. Gent, 1983; Gent and Dean, 1986). Settlement was a function of many but not all sites (e.g. Bowden, 2005). Their prominence in the landscape suggests that being seen was a matter of considerable significance, either to display dominance or to deter marauding neighbours.

However, some Iron Age structures do not appear to be designed for visual dominance. These fortifications echo the monumentality of visually-prominent hillforts but are located in low-lying wetlands. Examples include the Berth, near Baschurch and Wall Camp, near Telford on the Weald Moors, both in North Shropshire, and Stonea Camp, near March, Cambridgeshire. As seeing and being seen appear to be fundamental to the construction of hillforts, this practice seems counter-intuitive. The reasoning behind this behaviour, the functionality of such structures, and their role in a progressively enclosed landscape, are legitimate questions, the answers to which may shed light on an enigmatic period in British prehistory.

Increasingly, such monuments are referred to as marsh-forts (Riley, 1980; Brown, 2008; English Heritage, 2011; Lock and Ralston, 2017). Little is known about these structures, and detailed investigation is confined to one site – the enclosures of Sutton Common near Doncaster (Parker Pearson and Sydes, 1997; Van de Noort et al., 2007), a marsh-fort in a region not renowned for its hillforts. Sutton Common provided a suite of evidence which is hard to explain in everyday terms. Situated in a floodplain environment, its dual enclosures were
connected by a causeway over an infilled palaeochannel. Its chronology (Middle/Late Iron Age) is short and discontinuous. The site was not a settlement, but 150+ four- and six-post structures (possibly granaries) occupied the interior; human remains and ‘mortuary rings’ also form part of the recovered evidence. Taken together, these data suggests a site dedicated not to domestic activities but to remembrance, ritual and ceremony (Van de Noort et al., 2007:176–7). One of the questions addressed here is whether this interpretation can be applied more widely.

Sutton Common provides a template against which other similar monuments can be assessed. No systematic evaluation has been made of potential marsh-fort sites across England and Wales, nor has a methodical multi-proxy analysis been undertaken of marsh-fort landscapes. This study takes a comprehensive, two-part approach to address these issues:

- firstly, by reassessing the existing dataset to see whether sites previously classified as hillforts or enclosures could be classified as marsh-forts, and whether the assembled body of information points towards a site-type which was culture-specific, convergent or universal, and
- secondly, by analysing the micro-ecology surrounding the Berth marsh-fort to reconstruct the longue durée of its landscape development.

1.2. The ‘problem’ with hillforts

The hillfort phenomenon is highly varied – chronologically, morphologically, topographically and functionally. Their construction spans the first-millennium BC and they are seen as the enduring symbol of the British Iron Age. Many conform to one of several morphological patterns; others do not. They are associated mainly with uplands and down-land, in southern England, Wales and the Welsh Marches, and Scotland. Any one hillfort may evoke a single purpose or a range of functions during its lifetime, from domestic to industrial to ceremonial, reflecting profound differences at a practical, social and symbolic level (Harding, 2012:27). Only a few indicate a violent past. However, despite their obvious variety and their regional and topographical bias, hillforts are presented as the main societal model for the Iron Age and have come to dominate our understanding of Iron Age communities in Britain (e.g. Hawkes, 1931; 1951; Stanford, 1967; Wheeler, 1972; Guilbert, 1975a; Cunliffe, 1983; Gent and Dean, 1986; Haselgrove, 1986; Sharples, 1991a; Hamilton and Manley, 2001).

A study of marsh-forts offers a unique opportunity to expand Iron Age studies away from this uniform interpretive model. Living in a wetland would require different skills and generate a separate set of social norms (e.g. Van de Noort, 2004), and although wetland living has been addressed by some highly influential studies, investigation is limited to sites which were predominantly domestic or specialist in function, for example the Late Iron Age lake villages of Glastonbury and Meare on the Somerset Levels (e.g. Coles and Minnitt, 1995), and crannogs (e.g. Cavers, 2006). Marsh-forts are neither upland hillforts nor lowland settlements and do not conform to either model. These monumental structures share size and architectural similarities with hillforts, but appear to be sited to exploit both the potential richness of resources and the inherent spirituality associated with wetlands during the Iron Age (e.g. Bradley, 2000). They have the potential to identify an alternative for Iron Age praxis.

There is also an issue of nomenclature. The term ‘hillfort’ has been in use throughout the twentieth-century to refer to a range of later prehistoric structures which are defined by their impressive architecture and spectacular locations. This ‘portmanteau’ classification (Cunliffe, 2005:347) has become conflated over the years; its use has grown to cover a genre so wide that making hillforts fit a pattern has been likened to a Procrustean treatment of the archaeological facts (Hogg, 1975), enforcing uniformity where none exists. Forde-Johnston found the term ‘misleading’ (1976:3) whilst Hogg contended that ‘...all the alternatives which have been suggested are open to even more objections...' (1975:xx). Various attempts have been made to re-define it; a recent example – ‘an enclosed place constructed in a highly visible location to serve as a focus (if sporadic) for communal activity’ – stresses the key elements of enclosure, visibility and community (Cunliffe, 2006:152). Most of the marsh-forts considered here are classified as hillforts in the Historic Environment Record (HER) but would fail Cunliffe’s test on visibility grounds.

Systematically codifying hillforts according to topographic similarities has been undertaken several times (e.g. Forde-Johnston, 1976; Hogg, 1979; Dyer, 1981; Lock and Ralston, 2017). Such typological groupings have not necessarily deepened understanding. Whilst it could be argued that marsh-forts are simply one more variation on this theme, the contention here is that they are defined by more than their topographic setting and that they warrant a comprehensive investigation. Monuments which are not reviewed collectively run the risk of being overlooked, with the associated loss of chronological, morphological, functional and phenomenological detail. The classification and language used to describe landscape features is more important than it seems. Not only does it ‘allow us to speak clearly about such places’ (Macfarlane, 2015:26), but, additionally, ‘...once a landscape goes undescribed and therefore unregarded, it becomes vulnerable to unwise use or improper action.’ (Macfarlane, 2015:27). Whilst Macfarlane was describing natural landscapes in the
Outer Hebrides, the same is true for archaeological sites and the landscapes they occupy. It may seem pedantic, but the nomenclature used to describe different types of later prehistoric structures – in this case, marsh-forts – does matter.

1.3. The archaeological and ecological opportunities presented by wetlands

‘...Quagmire, swampland, morass, the slime kingdom...
Ruminant ground.
Digestion of mollusc and seed pod,
deep pollen bin.
...a bag of waters... ’
(Kinship, Heaney, 1975)

Wetlands were resource-rich environments highly utilised throughout prehistory. As a consequence, and acknowledging the preservative nature of anaerobic environments, they frequently incorporate a palimpsest of archaeological features. Examples are legion – the recreation of the ancient landscapes surrounding the Littleton Bog in Co. Tipperary (Mitchell, 1965); the exploitation of the palaeolake at Star Carr, North Yorkshire by Mesolithic and Neolithic hunters (Legge and Rowley-Conwy, 1988; Mellars and Dark, 1998; Milner et al., 2011); the Bronze Age settlement at Must Farm in Fenland (Knight, 2009); the extraordinary evidence for everyday Iron Age living and craft specialisation preserved at Glastonbury and Meare (e.g. Coles and Minnitt, 1995). The importance to Iron Age societies of the ritual deposition of metalwork into watery settings can be seen, sometimes on a grand scale, along some major watercourses such as the Witham Valley, Lincolnshire (Bradley, 1990) and in lakes such as Llyn Cerrig Bach, Anglesey (Lynch, 1970).

Evidently, marsh-forts are found in wetlands and they promise a wealth of evidence which is often unavailable at hillfort sites. As much as any hillfort, their remains need to be examined temporally, regionally and culturally for their social and symbolic importance. They pose many questions. What differentiated those who built in wetlands from those who chose to build at higher altitudes? Was it a choice, or did those who monumentalised wetland landscapes simply have no other options (cf. Forde-Johnston, 1976)? Did the impetus to build in wetlands stem from the lure of a resource-rich environment, or did it provide access to, and control of, an environment that had important ritual connotations?

This research looks at the syntax of Iron Age wetland landscapes and in particular the role played by marsh-forts in the lives of the people who constructed and used them, establishing a set of criteria (based on Sutton Common) against which marsh-forts can be assessed. Additionally, by using the Berth as a case-study, it investigates the spatial and palaeoenvironmental context of a marsh-fort in the North Shropshire wetlands.

This research is timely and important. The continual threat to wetland environments from farming practices and development (e.g. Van de Noort et al., 2002) places this unique phenomenon at critical risk. Unless looked at specifically and collectively, this lens into Iron Age society may be lost.

1.4. Structure

The scale of this research encompasses macro- and micro-level landscape investigation; the structure is outlined in Fig. 1.1.

Beginning with a review of the current literature, Chapter 2 situates marsh-forts within a hillfort context. The project-based methodology adopted here is explained in Chapter 3, describing a nested set of processes which drill down from national, regional, site and finally micro-environmental level. The methodology is multi-disciplinary, combining multi-proxy environmental analysis (pollen, plant macrofossil and Coleoptera) with extensive auger-based coring, GIS modelling and a robust radiocarbon dating programme. (The Berth is now the subject of an extended excavation programme; the results are in press and are not covered by this research (see Chapman, Smith and Norton, 2017)).

Chapter 4 reviews marsh-forts nationally across England and Wales. (Marsh-forts occur across the mainland of Britain (Lock and Ralston, 2017); however, the Scottish Iron Age comprises its own set of cultural norms (Harding, 2004; 2006) and its marsh-forts are not covered here). Landscape theory (e.g. Aston, 1985; Tilley, 1994; Strang, 2008; Bowden and McOmish, 2012) is used to emphasise the socially constructed nature of landscape and to support the identification of marsh-forts within wetland landscapes/waterscapes. The chronological, artefactual, palaeoenvironmental and morphological features which characterise Sutton Common are used to provide criteria from which to create a base-line hypothesis – the ‘archetypal’ marsh-fort. A range of sites, identified through a combination of literary review, HER (Historic Environment Record) search and site visits, are compared to this hypothesis and the resulting gazetteer ranks each site’s potential as a marsh-fort. Marsh-forts appeared to be local to eastern England (Riley, 1980; Parker Pearson and Sydes, 1997), but the results of the gazetteer indicate a wider distribution, with implications for the Iron Age agenda regionally and nationally (Haselgrove, 2001a; 2001b).

A group of potential marsh-forts located in North Shropshire are subject to a more intense study in Chapter
5. Descriptions of the landscape and archaeological characteristics for each marsh-fort candidate are contextualised with reference to North Shropshire’s geological, hydrological and landscape features. In particular, the results of a palaeoenvironmental case-study (palaeoentomological investigation and a small-scale auger-based coring programme) undertaken at Wall Camp on the Weald Moors is summarised and compared with both Sutton Common and the Berth (Norton, 2013; 2016).

Each site has the potential for further research. However, the Berth, with its highly unusual morphology and striking similarities to Sutton Common, is selected as a subject for an in-depth case-study. Chapters 6, 7, and 8 present the results of the field work, site visits and palaeoenvironmental study described in Chapter 3. Chapter 6 summarises the known evidence from the Berth, placing the monument within its wider topographical landscape and archaeological context, using data from HER and PAS (Portable Antiquities Scheme) records. The results are modelled using ArcGIS 10.2 software1. A chronologically-based stratigraphic analysis of the area immediately surrounding the Berth is reconstructed from the data obtained through a transect coring programme and presented in Chapter 7. Chapter 8 provides the results of a multi-proxy palaeoenvironmental analysis of samples taken from locations adjacent to the Berth’s earthworks and causeways; the detailed environmental sequence encompasses almost the entire Holocene, including the period when the Berth was in use; the palaeoenvironmental data is compared with existing pollen studies from Berth Pool (Twigger, 1988) and Crose Mere (Beales, 1980).

‘It is often said that the object of science is to consider metaphysical propositions and bring them into focus within a system of theoretical knowledge which has clear empirical consequences’ (Murray and Walker, 1988:284). This approach is adopted in Chapter 9, which discusses the results presented in Chapters 4-8 with reference to the literary review and landscape theory expounded in the text, opening up new fields of knowledge and constructing the case for the Berth as a marsh-fort. This discussion is expanded to encompass the marsh-forts highlighted in the gazetteer. There are competing interpretations in the presented evidence which are intended to foster debate. Suggestions for future work can be found in Chapter 10.

1 A geographic information system (GIS) for the management, analysis, and display of geographic information; https://www.arcgis.com
Full species lists of plant macrofossil and coleopteran data, plus details of all radiocarbon determinations are included in the Appendices, together with summaries of several seasons of excavation at the Berth undertaken in the 1960s by the late Peter Gelling (Gelling, 1962/5; 1964; Gelling and Stanford, 1965 (1967); Guilbert et al., 1977; Morris and Gelling, 1991). A summary of the relevant map and archival records held by the Shropshire Archive and the British Library are also included. Neither the Gelling finds nor the evidence from the Shropshire Archive are presented as expert summaries, and each dataset warrants a more thorough and discursive approach to its analysis. They are offered here as background to the Berth case-study. Diagrams and pictorial evidence are embedded within the text together with full results from the marsh-fort gazetteer.

By their very nature the places discussed are particularly wet and boggy, a landscape which would have materially affected the lives of those who lived there. To conjure this sense of place (e.g. Tuan, 1974; 2011), quotations from Seamus Heaney’s *Bogland* series (Heaney, 1972; 1975; 1996; 2002) and other poets are included in the text. Heaney viewed wetlands as deeply spiritual places and, in many of his works, the bog is seen as a membrane through which we can access the past. These inclusions aim to be allusive and evocative rather than intrusive.

This study is exploratory in nature, and unique in approach. It draws conclusions from a number of research fields which have application across Iron Age studies. These include the utilisation of marginal environments, the articulation of the wetland/dryland interface, economic strategies, the blurring of purpose of high-status Iron Age monuments, and the possibility of direct communication between geographically spread regions. It delivers a framework for understanding marsh-forts as a site-type and places them within a chronological and spatial perspective.

This research looks at a group of Iron Age monuments that have been hidden in plain sight, and presents a framework through which to investigate their role in later prehistoric society:

‘The hardest thing of all to see is what is really there...' (Baker, 1967)

1.5. Definitions

1.5.1. Defining terms

Key words are defined throughout; a List of Abbreviations is included in the Contents.

1.5.2. Chronology

This text uses common short-hand when referring to archaeological time-periods, as follows:

<table>
<thead>
<tr>
<th>Period</th>
<th>Approximate time frame (after Hunter and Ralston, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Devensian glaciation</td>
<td>110,000 – 11,700 BP</td>
</tr>
<tr>
<td>Younger Dryas</td>
<td>14,500 – 11,500 BP</td>
</tr>
<tr>
<td>Holocene (individual chronozones are discussed within the text)</td>
<td>10,000 BP to date</td>
</tr>
<tr>
<td>Archaeological</td>
<td></td>
</tr>
<tr>
<td>Mesolithic</td>
<td>11,600–4,000 BP (9,600 – 4,000 BC)</td>
</tr>
<tr>
<td>Neolithic</td>
<td>6,000–4,000 BP (4,000 – 2,400 BC)</td>
</tr>
<tr>
<td>Earlier Bronze Age</td>
<td>4,500–3,500 BP (2,500 – 1,500 BC)</td>
</tr>
<tr>
<td>Later Bronze Age</td>
<td>3,500–2,750 BP (1,500 – 750 BC)</td>
</tr>
<tr>
<td>Iron Age</td>
<td>2,800 BP (800 BC) – AD first-century</td>
</tr>
<tr>
<td>Earliest Iron Age</td>
<td>2,800 – 2,600 BP (800 – 600 BC)</td>
</tr>
<tr>
<td>Early Iron Age</td>
<td>2,600–2,400/2,300 BP (600 – 400/300 BC)</td>
</tr>
<tr>
<td>Middle Iron Age</td>
<td>2,400–2,300 – 2,100 BP (400 – 100 BC)</td>
</tr>
<tr>
<td>Late Iron Age</td>
<td>2,100 BP (100 BC) – AD 43/84</td>
</tr>
<tr>
<td>Roman</td>
<td>AD 43 – 410</td>
</tr>
</tbody>
</table>

1.5.3. Radiocarbon dates

The details of radiocarbon dates obtained by this research are presented in Table 7.2 and Appendix 1 (results before present (BP); laboratory numbers; calendrical date range at the 2σ/95.4% level of confidence). The dates for environmental evaluation cited in the text are presented as uncalibrated dates BP. Where radiocarbon dates are quoted for specific site dating, they have been re-calibrated using the OxCal (v4.3) radiocarbon calibration programme (https://c14.arch.ox.ac.uk/oxcal.html). Where this was not possible, dates are incorporated using BC, AD or BP, depending on the source text.