Bridging Science and Heritage in the Balkans: Studies in archaeometry, cultural heritage restoration and conservation

edited by

Nona Palincaș and Corneliu C. Ponta

ARCHAEOPRESS ARCHAEOLOGY
Contents

Foreword .. iii

Multiple Investigation Methods Combined

Micro- and Macroarchaeology – How Can the Two Be Combined? ... 1
Ulrike Sommer, Silvia Amicone and Elena Chernysheva

Archaeometry and Individual Biographies: Evidence from Radiocarbon Dating, Isotope-Based Diet
Reconstruction and Metal Composition from the 14th-17th-Century Cemetery in Bărăști
(Southern Romania) ... 16
Nona Palincăș, Corina Anca Simion, Gabriela Odilia Sava, Oana Gâză, Tiberiu Bogdan Sava,
Bogdan Constantinescu (†), Daniela Stan and Maria Mihaela Manea

Radiocarbon Dating

Case Studies on the Radiocarbon Dating of Bronze Age Cremation Burials in Hungary 29
János Dani, Kitti Köhler, Gabriella Kulcsár, István Major, Eszter Melis, Róbert Patay, Géza Szabó, Tamás Hajdu,
István Futó, Róbert Huszáink and Viktória Kiss

Revisiting the Radiocarbon-Based Chronology of the Wietenberg Culture (Middle Bronze Age
Transylvania): A Debate of Supra-Regional Relevance ... 38
Nona Palincăș, Mihai Rotea, Tiberiu Bogdan Sava, Gabriela Odilia Sava, Oana Gâză, Monica Bodea
and Constantin David

Archaeological-Historical Information and Radiocarbon Dating: Problems of the Late Bronze-Early
Iron Age Chronology of the Carpathian-Danubian-Balkan Region ... 52
Attila László

Radiocarbon Dating of the Wooden Church in Borovinești (Southern Romania, 19th Century):
An Attempt to Elucidate the History of the Church .. 64
Corina Anca Simion, Nona Palincăș, Gabriela Odilia Sava, Oana Gâză, Iuliana Mădălina Stanciu,
Tiberiu Bogdan Sava, Doru Gheorghe Păceșilă, Iulia Anania and Laurențiu Dragomir

Archaeometallurgy

Compositional Analysis of the Agighiol Hoard: Provenance and Possible Links to Pieces in the Detroit
Institute of Arts and the NYC Metropolitan Museum of Art .. 72
Bogdan Constantinescu (†), Daniela Stan, Angela Vasilescu and Mircea Babeș

Ceramics

Compositional Analysis of the White and Red Colours in the Chalcolithic ‘Sanctuary’ at
Cășcioarele-‘Ostrovel’ Tell (Southern Romania, c. 4800-4550 cal BC) .. 81
Radu-Alexandru Dragoman, Maria-Mihaela Manea, Radu Florin Andrei, Dragoș Alexandru Mirea,
Mădălina Răvar, Corina Anca Simion and Mihai Straticiuc

Archaeometric Studies of Boian Pottery from Nanov-‘Vistireasa 3’ (Teleorman County, Romania,
c. 4800-4500 cal BC) .. 92
Vasile Opriș, Dragoș Alexandru Mirea, Radu Florin Andrei, Mihai Straticiuc, Corina Anca Simion,
Ioana Stânculescu, Lucreția Miu and Laurențiu Dincă
Glass

Glass Analysis in Relation to Historical Questions .. 103
Žiga Šmit

Paper and Pigments

A Decorated Islamic Manuscript from the Ottoman Turkish Period: Paper Characterisation, Dating and Conservation .. 110
Maja Kostadinovska, Irena Naumovska, Zorica Jakovleska Spirovksa and Tatijana Kančevska Smičkovska

The Micro-Chemical and Spectroscopic Study of Component Materials in 18th- and 19th- Century Printed Holy Books .. 115
Maja Kostadinovska, Orhideja Grupče, Zorica Jakovleska Spirovksa and Biljana Minčeva Šukarova

DNA Analysis

DNA Analysis of the Human Remains Found in a Cucuteni Ritual Pit in Eastern Romania (4100-3800 cal BC)... 118
Neculai Bolohan, Florica Măţău, Mitică Ciorpac and Dragoş Lucian Gorgan

Archaeometric Field Research Methods

The Boyadzhik Concession Area: the Use of GIS Technology in the Protection of Cultural Heritage 124
Todor Valchev and Stefan Bakardzhiev

Heritage Restoration and Conservation Methods

Victoria Atanassova, Ivan Kostadinov, Peter Zahariev and Margarita Grozeva

Cultural Heritage Disinfection by Irradiation .. 140
Corneliu C. Ponta

Nuclear Techniques in Preservation Treatments of Archaeological Organic Materials and How to Take Archaeological Studies into Account When Applying Them .. 147
Laurent Cortella
Foreword

This volume is largely based on the scientific communications given at the Fifth Balkan Symposium of Archaeometry 2016 (BSA5). The Editors gracefully asked me to write this foreword given my contribution in organizing the event and despite my limited contribution to the making of the volume itself. I could hardly refuse the honour and in doing so I will include in this foreword information about the symposium, a few of the ideas that emerged from the discussions there and will only succinctly refer to the content of the book and the conditions it was put together in over two years of work by Dr Nona Palincas and Dr Corneliu C. Ponta, the Editors, plus the authors and the referees participating in the peer review process.

The symposium

The symposium took place between 25 and 29 September 2016, in the Carpathian resort town of Sinaia, Romania. The first BSA was organised in 2008 in Ohrid (North Macedonia), the next ones in 2010 in Istanbul, in 2012 in Bucharest and in 2014 in Nessebar (Bulgaria). These symposia have therefore a tradition, even though not a long one. A question may arise whether these events, dedicated to specialists residing or working in such a restricted geographical area as the Balkans, however broadly conceived (we addressed specialists from or working in Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Greece, Hungary, North Macedonia, Romania, Serbia, Slovenia, Turkey), is warranted or not, given the existence of several more general meetings and conferences on such topics. Or whether the topic is too broad and the area too small. At the time I did not doubt a single moment that yes, these meetings are needed and can be useful if we are to develop a strong local archaeometry in a systematic way. That certainly has also come from my personal connection with the field: about four decades ago my first consistent scientific project as a young physicist, newly employed at Horia Hulubei Institute for Physics and Nuclear Engineering (IFIN-HH) for a job of fundamental research in nuclear physics, was one of archaeometry (analyses of a few large numismatics hoards). And from my love of history. And while away from the field for 20 years, but with the advantages and responsibilities of the position I was having as IFIN’s scientific director, I considered that we need to do as much as possible to bridge the gaps between science and heritage (see below the title chosen for this event). I had the same opinion during the organisation time, during the event itself and after! I still hold it now! We know that the region of Balkans is not merely rich, but extremely rich in history, in monuments and artefacts, and we know also that in most countries we are far behind the curve when it comes to the use of modern techniques in the study and preservation of material cultural heritage. While the richness, age and diversity of region’s heritage is hardly matched by any other region of the world of the same size, the research in the area we are talking about here is not so developed, not enough attention is given to it by the responsible authorities! Not in all countries the authorities and the people at large understand the importance of cultural heritage and the need for its preservation and study. Not everywhere the importance of these for the economy, through tourism e.g., is understood and we face many times the impression that they are only burdens on budgets. Local budgets or national science budgets! We also know that in some areas, and by this I mean certain methods, we may have very good specialists and equipment but is also true that in some cases they are better known and appreciated abroad than inside their own countries (a good example is that from our institute for gamma irradiation techniques applied to conservation or consolidation of artefacts – see C. Ponta, in this volume). But these cases do not change the overall assessment that there is both insufficient use and demand of modern techniques in heritage sciences and practice.

The title chosen for this event was ‘Bridging Science and Heritage’ and the organisers of the symposium were the Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) in Bucharest-Măgurele, the University of Bucharest (UB) and the Vasile Pârvan Institute of Archaeology in Bucharest (IAB) of the Romanian Academy.

The symposium focused on the application of modern physical and chemical methods in archaeometry, including nuclear methods and techniques used in the dating, analysis, investigation and characterisation of ancient artefacts, as well as their conservation and consolidation. Subjects from the related fields of archaeology and art history were also touched upon.

The programme included invited lectures (speaking time 40 min.), oral (20 min.) and poster presentations on the following topics:

- Analytical methods for cultural heritage diagnostics
- Lithic materials
Archaeometallurgy
Radiocarbon Dating
GIS applications
Preservation of cultural heritage – conservation and restoration
Optoelectronic applications
Experimental archaeology
Multidisciplinary research in archaeology

A few more words about the organisers of BSA5. To start with, it is mandatory to mention here the members of the local Organizing Committee and Program Committee:

Organizing Committee:

Livius Trache FIN-HH, Chair
Emilian Alexandrescu University of Bucharest, co-chair
Ioana Stânculescu University of Bucharest and IFIN-HH
Bogdan Constantinescu (†) IFIN-HH
Mihaela Constantin IFIN-HH
Roxana Morteana University of Bucharest
Nicolae Ionescu University of Bucharest
Nona Palincăş Vasile Pârvan Institute of Archaeology
Vasile Opriş Vasile Pârvan Institute of Archaeology
Cătălin Nicolae Vasile Pârvan Institute of Archaeology

Program Committee:

Attila László Alexandru Ioan Cuza University, Iaşi
Nona Palincăş Vasile Pârvan Institute of Archaeology

It is mandatory to note that among those mentioned in the longer list above we had Nona Palincăş, Corneliu Ponta and Ioana Stânculescu working extra time, with extra dedication and extra efficiency in these committees to address as wide an audience as possible, to make the right invitations, to have the booklet of abstracts ready and printed in time, to have the program ready, with appropriate sessions and chairs, etc.

At the time when the event was in its organizing phase, we insisted through invitations that we cover as many as possible of the countries in the Balkans and that we cover most of the topics in range. We succeeded to do these, but some limitations occurred for the event itself and during the editing of this volume. I note that one of our colleagues from Turkey had to cancel her trip to Sinaia in the last moment, for reasons we understood to be neither personal, nor scientific in nature. Some countries had fewer than expected representatives and unfortunately Greece and Croatia had none. Later, some of the participants would not contribute to this volume because they have other priorities imposed by their working environment (like where to publish). It is important to say here that we had a consistent support in the presence at the symposium of well-known specialists from outside the region: Walter Kutschera (University of Vienna), Laurent Cortella (ARC-Nucleart Grenoble), Ulrike Sommer (University College London), Pieter Vandenabeele (Ghent University), or attending the BSA for the first time: Milica Stojanović-Marić (National Museum Belgrad), Žiga Šmit (University of Ljubljana). The latter assumed the responsibility of organizing the next edition (at this time BSA6 has already taken place in September 2018 in Ljubljana, Slovenia, with the institutional support of the National Museum of Slovenia). The presence at BSA5 of about one hundred specialists (some attending only part-time) from different fields of expertise made us believe that our goal was reached to a large extent. We could reunite archaeologists, historians, museum curators, physicists, chemists, biologists, science managers... researchers and/or university professors, custodians of national and global heritage monuments and artefacts.

BSA5 had five ordinary sessions of half a day each and a session in round table format on the last day, a Thursday. The round table, in the organisation of which Emilian Alexandrescu from the University of Bucharest was particularly involved, was entitled Multi-disciplinarity in archaeology: Situating archaeometry in education and research. On that occasion, many more people joined the participants to the ordinary sessions. Officials of the host country involved in research policy and in the management of research and higher education, representatives of history departments from Romania’s universities, members of the Romanian Academy, politicians and media representatives were
invited. And some responded to the invitations: Octaviana Marincaş – representing the Ministry of Research (ANCSI - Agenţia Naţionala pentru Cercetare Ştiinţifică şi Inovare/the National Agency for Scientific Research and Innovation), Petre T. Frangopol from the Romanian Academy, Vasile Cotelă from University of Iaşi – ARHEOINVEST Platform, Doriţa Mică from Timişoara – ARHEOVEST Platform, Emilian Alexandrescu, Carol Căpăţă and Daniela Zaharia from the University of Bucharest, arheologists Eugen Teodor, Nona Palincăş, Vasile Opriu from various institutions in Bucharest, many researchers from IFIN-HH. The round table itself had two parts, a first for general discussions on the topic in the title and one specific for the situation in Romania. The first had a few interventions from participants commenting on the status of the field in their respective countries. The second one was longer and was related to the assessment of the status of archaeometry, or more generally said, of the status of the use of modern chemical and physical methods in the study and preservation of the material cultural heritage in Romania.

To assess the need (large), the technical possibilities (good) and the human resources (poor) for this endeavour! Right up for the title of the whole event: we need to have these bridges between specialists in the positive sciences and those in humanistic ones. Bridges are needed between us physicists, chemists, biologists, engineers etc... and those who are the specialists and the curators of the monuments and artefacts that constitute our common heritage.

One important conclusion was that the educational system lacks a good, modern curriculum of archaeology in its universities. Fundamental changes are needed to create the specialists that can respond quickly and adequately to the challenges of the present time and society. Most challenging: the preventive archaeology connected with the increased and increasing number of construction sites and the need for specialised classes, at master level and above, on the methods of the ‘positive sciences’ with application in archaeology. Moreover, a wider cooperation between the people and institutions with responsibilities and possibilities in the field is needed and within reach. I cannot skip here the fact that I presented the offer of our institute (IFIN-HH) in the fields of study and preservation of cultural heritage, which is large and diverse (see http://patrimoniu.nipne.ro/), but not sufficiently known or used by the ‘beneficiaries’, national or regional. And is the contribution that IFIN-HH could bring to a national Centre for the Study and Preservation of Cultural Heritage, a localised or a virtual centre, set up as a network of research infrastructures and specialists dedicated fully or partially to heritage studies that we strived to organise at that time. Two years after, I have to say that, no, the center was not formally setup, despite the initial support of the ministry of research, but that in practice it works at the grass-root level. While in September 2016 we did not know about the E-RIHS (European Research Infrastructure for Heritage Sciences) initiative, at this moment we struggle to join it, as its ideas and principles are similar.

To conclude this section: the support of the University of Bucharest, directly through its Rector Mircea Dumitru, academician, was crucial in extending the number of participants – young ones in particular - by hosting at no cost some participants in its Guest house in Sinaia. The Romanian ministry of scientific research (ANSCI) supported the workshop with seed funding. IFIN-HH and IAB supported the Organisers. Not in the last, we need to acknowledge the excellent conditions offered by hotel International**** (https://www.internationalsinaia.ro/) in Sinaia that hosted the meeting in its Conference centre and accommodated most of the participants.

This volume

The volume contains 16 papers, all solicited to the participants and carefully reviewed by the Editors and their evaluators. For the customs of the community I come from (nuclear physics), the time it took to have it put together is long. Apparently it is not so for archaeologists or people working in the fields represented here. The extra care the Editors put into having the papers selected and worked out is commendable.

The purpose of the volume itself and the restricted number of papers would not allow to treat exhaustively or extensively each topic, either section, or to offer reviews of the status of each particular topic globally or in the Balkans. It was more so done in the actual presentations at the symposium than it is here, as each presentation started with an overview of the topic or problem, while the printed text concentrates on news.

The papers in the volume are of various complexity and length. Some are focused on methods, presenting either the results of a new method (Atanassova et al.) or improvements of an established method (Şmit), new ways of resorting to established methods (Sømmer et al.), discussion of established methods in relation to concerns raised by those still unfamiliar with them (Cortella) as well as the history of a method (Ponta). Other papers are case studies of various extents. Rather than following the division between focus on method vs. focus on applications, the editors opted for grouping the papers according to the analysed material, whenever this was possible, to help the readers – usually specialised in a certain field – to quicker identify in the book content the papers of interest. The volume is thus loosely divided in nine sections, some more consistent, many containing one or two papers only. It starts with two papers grouped under ‘Multiple investigation methods combined’ by Sommer et al. and Palincăş et al.,
respectively. They treat directly what could be called the fundamental problem of archaeometry: what methods to be used, how to be combined, what can we learn from them? What are the limits of methods, what do we learn from apparently contradicting results and so on? In particular Sommer et al. ask to what extent the archaeological excavation would be different if we had archaeometry involved during excavation and not afterwards as it is usually the case, while Palincăş et al. show the benefits of considering together the results of methods that are usually applied separately – in this case diet studies and archaeometallurgy – in understanding people’s biographies.

The second section is the most consistent one, with four papers on the use of radiocarbon dating. Three of them refer to Bronze Age cases of wide European interest: Dáni et al. dated cremated bones from Early and Middle Bronze Age on the territory of present day Hungary in tandem with associated organic material as part of a wider attempt to develop the radiocarbon dating of cremated bones, Palincăş et al. assessed the methodological accuracy in dating by radiocarbon the Middle Bronze Age in Central Romania and its impact on the long debated Aegean connections, while László revisits one still unsolved case of systematic difference between absolute dating by historical-astronomical and radiocarbon methods of the Late Bronze - Early Iron Ages in and around the Carpathian Basin. The last case study of this section is an application of the radiocarbon method to the history of an object – a wooden church of modern era (Simion et al.). These are followed by case studies in archaeometallurgy (Constantinescu et al. establishes the Danubian origins of Iron Age gold and silver pieces found today in the collections of famous museums in the USA), ceramics archaeometry (Opriş et al. and Dragoman et al. present analyses of pigments used in the decoration of Chalcolithic pottery and architecture pieces from the fifth millennium BC), glass (Šmit presents an improvement of the PIXE method applied to early Medieval glass from Slovenia) and pigments (Kostadinovska et al. study pigments used on Late Medieval manuscripts). These are followed by one case study on the DNA analysis of one human skeleton from the Cucuteni culture (usually known for its 6-7 millennia old beautiful ceramics) by Bolohan et al. and one on the use of GIS technology for the identification of previously unknown archaeological sites by Bakardzhiev and Valchev.

The last section is a more consistent one and includes three papers on ‘Heritage conservation methods’, from three different countries: Bulgaria, Romania and France. The first of the three by Atanassova et al. is a specific application of modern methods to the restoration of stone monuments damaged by contemporary graffiti, while the papers by Cortella and Ponta describe a wider range of applications of gamma irradiation for cultural heritage disinfection and preservation of archaeological organic materials. These latter two draw on the expertise of two trail blazing teams of scientists and the state-of-the-art installations they built in Bucharest and Grenoble respectively to introduce and test modern methods in the field of cultural heritage preservation, restoration and consolidation.

All in all, I believe that this volume is a good mirror of what the 5th Balkan Symposium of Archaeometry (held 25-29 September in Sinaia, Romania) was about and to a significant extent of the current situation in the Balkan region in the field of the use of modern scientific methods for the study and conservation of cultural heritage. And I would dare to say that what is missing from this volume reflects well what is missing in this field in our countries.

Prof. Livius Trache
Bucharest-Măgurele, December 2018
livius.trache@nipne.ro

Editors’ note: With great sadness we learned that one of our colleagues, Dr Bogdan Constantinescu, a co-organiser of BSA5 and a contributor to this volume, had passed away unexpectedly a few days before the arrival of his chapter for proofreading. The community will miss his contribution.
Abstract

We present the scientific analyses conducted on the ongoing excavation of the late Criș settlement at Tășnad-'Sere', Satu Mare county. The excavation aims to understand the relationship between the occupation layer and sub-surface features. We seek to achieve constant feedback between the scientific analysis and the excavation, adapting our excavation methods as needed. The ultimate aim is to develop methods that can also be applied to more conventional excavations. Soil analysis (XRF) revealed a good correspondence between sulphur, inorganic phosphorus, potassium and calcium and the archaeological features. Lipolythic microorganisms and thermophilic bacteria were identified both around and within a pit. Petrographic thin section analysis showed that a very similar fabric with fine organic inclusions was used in all areas analysed.

Keywords: taphonomy, ceramic petrography, pottery colour, phytoliths, soil biology, lipolythic microorganisms, soil analysis, X-ray fluorescent spectrophotometer.

Introduction

The following is an account of the use of methods drawn from Natural Science during an ongoing research excavation. We are thus not able to present any final results here. The account is written from the perspective of a field archaeologist and therefore very much concerns what the primary author (U.S.) learned from her co-authors and other collaborators during the process. The ceramics are analysed by Silvia Amicone; the soil by Elena Chernysheva.

Archaeometric studies are very often only undertaken after an excavation has been completed, while the results of scientific studies feed into ongoing excavations far too rarely. In the following, we reflect on how to bridge the gap between field archaeologists and archaeometrists and natural scientists, and how to arrive at research questions that are beneficial to both.

Archaeometry still has no clear place in mainstream archaeological theory (Martínon Torres and Killick 2016). At best it is accorded the status of a method (e.g. *Hilfswissenschaft* in German). The natural sciences are perceived as realist and empiricist, looking at the material properties of artefacts, while archaeologists, at least in Britain, see themselves as part of the humanities and often take a subjectivist, idealist stance, emphasising the active use of material culture (Hodder 1982) and the nature of artefacts as socially and culturally constructed (cf. Jones 2004). This is the case despite the so-called material shift in cultural studies and the recent interest in materiality, ‘thingyness’ and entanglement (Hodder 2011, 2012, 2014). In recent years, the concept of materiality has become very fashionable in archaeological theory, especially in the UK. Elisabeth DeMarrais et al. (2004: 2) offers the following definition: ‘in current archaeological theory, materiality approaches concern not only the study of the characteristics of objects, but also the more general notion that humans engage with the things of the world as conscious agents and are themselves shaped by those experiences.’ The concept was originally adopted from consumer studies. In the field of the history and philosophy of science, Bruno Latour (1991; 1999) has emphasised how the artificial contrast between mind and matter introduced during the Enlightenment has served to mask the complex interplay between researcher, instruments, social context and the investigated object. This was taken up in archaeology in terms of the demand for a ‘symmetrical archaeology’ (Shanks 2007; Olson and Witmore 2015). However, Tim Ingold (2007: 1, 3) criticised the discussion of materiality and material culture for seemingly having little to say about materials, and it was claimed that materiality had become a hindrance rather than a help in terms of understanding materials (Cooney 2016). In many respects, the discourse on materiality resembles
Archaeologists are often rather ignorant of the rapidly advancing possibilities provided by the scientific analysis of materials, while scientists can be badly informed or frankly uninterested in the research questions of archaeology. Indeed, scientists are often more concerned with developing and applying a new method rather than entering into a dialogue with archaeologists, something which is already difficult to achieve given their different epistemological backgrounds, let alone any terminological disparities. These problems can be alleviated by involving them in the archaeological process, allowing them to work on the excavation itself and therefore to influence the development of research questions, supervise sampling and, most importantly, suggest analytical methods, highlight their limitations and oversee their implementation on-site.

In the following, we outline the aims of the excavation in question and how these influenced the choice of scientific methods used. The results of these preliminary analyses have in turn influenced the design of the excavation. While there is constant feedback during the dig, we will probably need to rejig our excavation procedures fundamentally once the scientific analyses have been completed and explored in more depth.

The site

Tășnad-'Sere' is located in the Satu Mare region of north-western Romania. It belongs to the Late Starčevo-Criș culture, which represents the earliest Neolithic in the upper Tisa valley. The site is situated about 0.5 km west of the last hills of the Dealurile de Vest region, in which the town of Tășnad is situated. The remains of the Criș settlement cover an area of around 4-5ha (Virág 2015: Fig. 1) in the valley of the Cehal River, a tributary of the Ier River, which feeds into the Tisa. Two 14C dates for animal bone, analysed as part of the EuroFarm project (Vander Linden et al. 2013), lie between 5200 and 5000 cal BC (Vander Linden in prep.).

At Tășnad-'Sere', sunken features like pits, postholes and so-called semi-pithouses, dug into a heavy clay alluvium, are covered by a dark occupation layer containing numerous finds, which in turn are covered by an alluvial layer that decreases in depth the further the distance from the Cehal River.

Finds from occupation layers are often perceived as unstratified and their provenance thus recorded in less detail than that of artefacts recovered from sunken features. In addition, given its location, there is a possibility that the artefacts in the occupation layer were displaced by the floodwaters that ultimately covered the site.

Aims of the Excavation

Relationship between features

As the dating of early Neolithic houses is often based on the content of adjacent pits (Astaloș and Sommer 2015: 82), the origin and chronology of pit-fills should be of great general interest. However, these have rarely been studied in any detail (cf. Schäuble 1997; Hoga 2014). In Tășnad, previous excavations by Ierkosan (1994/95), Németh (1990: 89-90), Virág (Virág et al. 2007; Virág 2016) and Astaloș (2005) have uncovered pits and houses under a substantial occupation layer. This made it a promising site at which to study the relationship between dug features and surface finds. In 2012, a trench for the joint UCL/Satu Mare excavations was laid out in an area where Neolithic sediments were buried by an alluvial deposit of more than 1m thick. This made any secondary disturbance highly unlikely. In addition, the area had been used as meadow or woodland for as long as records exist (Stanciu and Virág 2013: 173; Virág 2015). By three-dimensionally recording every find >1cm including its orientation and dip (Sommer and Astaloș 2015), we intend to trace potential post-depositional movements, caused, for example, by flowing water or argilliturbation, or changes during the use of the site, like trampling, and to elucidate the relationship between the occupation layer and dug features, such as postholes and pits. While there were some unexpected problems in recording artefact orientation due to the inexperience of the excavators, it is clear that fluvial action can be ruled out for the formation of the occupation layer.

Two layers can be differentiated in the alluvium. We tested the section for pH as well as trace elements (Figure 1) using portable X-ray fluorescence spectroscopy (Hunt and Speakman 2015). While the strong fluctuation of many trace elements may be due to either repeated short-term sedimentation events or a pronounced inhomogeneity of the sediment, there are some clear trends that seem to indicate a change in the sediments being eroded in the catchment area of the Cehal River and hence a change in land use. There is a visible change in sediment at c. 0.7m beneath the surface. This corresponds to a decrease in iron and rubidium and a rise in strontium and zirconium, while the values for titanium, zinc and yttrium do not show any clear correlation. The lower alluvium, which contains a few rolled sherds and is probably an eroded archaeological horizon, and the occupation layer proper have lower levels of iron and yttrium, while the occupation layer has lower levels of rubidium and zirconium. While the results need to be verified using a larger number
of samples in order to understand the nature of the fluctuating values, they demonstrate the value of pXRF (portable X-ray fluorescence) measurements in understanding the origin of sediments and verifying the visual assessment of the stratigraphy. The pH is alkaline throughout but drops with increasing depth.

Soil micromorphology will improve our understanding of deposition processes and the formation of the interface between the occupation layer and archaeological features. Samples at the interfaces between dug features and the occupation layer were collected but have not yet been analysed.

The excavation in UCL Trench 1 has so far revealed a pit in the southeast corner and a row of four postholes that may indicate the location of a house (Figure 2).

Settlement structure

The mapping of each individual find will allow us to study the settlement structure and the activity areas associated with individual houses. The results of the previous excavations indicate a regular layout of small houses arranged in parallel rows (Virág and Stanciu 2013). Given the sheer size of the settlement at Tășnad, it seems improbable that the whole area was used simultaneously. In the middle Neolithic Alföld linear pottery culture, rows of houses were occupied one after the other, as, for example, at Tiszaszőlős-Domaházapuszta (Domboróczi 2010: 210). A similar pattern may have been common in the preceding period as well.

At Tășnad and other comparable sites, dug features only appear once the occupation layer has been removed, as both occupation layer and dug features are normally dark greyish brown or black and consist of heavy clay. In addition, soil formation and a changing ground water level have probably masked former disparities in terms of colour and composition. Most finds in the occupation layer occur in dense concentrations of c. 0.6-0.9m in diameter and separated by areas almost entirely devoid of bigger finds, both horizontally and vertically. We interpret these concentrations as being individual dumping episodes outside a dwelling, maybe on an empty plot of land. If this assumption is correct then each of these dumping episodes represents a unique moment in time relating to a specific household, even if the corresponding houses cannot be identified as yet.

Despite an extensive programme of flotation – with ten litres of soil from each excavated square and spit being processed – very few plant remains have been found so far. Systematic bucket flotation has delivered hardly any carbonised seeds, and charcoal is rare except for the top spits. Amanda Leon, who is in charge of the archaeobotany programme, has tested a variety of procedures in the hope of improving the recovery rate, albeit without significant success. After processing samples from other sites in the area with similar soils – a Pișcolt pit from Blaja (corresponding to Linearbandkeramik in Alföld, the Great Hungarian Plain: Németi and Hágo 2015) and Eneolithic pits from Moftin – with the same negative results, we suspect a deleterious influence of the heavy clay soil, either in terms of the destruction of carbonised remains or their failure to float after prolonged soaking to break up the lumps. A separate programme of wet sieving yielded scarcely better results (Pomazi 2014). The effect of soil and especially of argilliturbation on charred remains is under-researched, however, and we are planning taphonomic experiments using modern charred cereal remains.

Alternatively, the dearth of plant remains – compared, for example, with the Linearbandkeramik (LBK) settlements (Bakels 1995; Bogaard 2004, 2011; Kreuz 1990) – could also indicate the existence of separate crop processing areas outside of the core settlement. The heavy fraction of the archaeobotanical flotation shows that microrefuse from chipped or ground stone work is also very rare in UCL Trench 1. This tallies with the densely built-up space inside the settlement, which does include not any of the yards associated with individual houses as in the later LBK.

Soil analysis

The thick soil cover over the Neolithic remains provided effective protection from later disturbances. This encouraged us to devote more attention to the actual composition of the soil itself. Since 2017, we have therefore been systematically taking samples to analyse the soil composition (granulometry, loss on ignition), magnetisation and pH from each excavated square and spit. Elena Chernysheva is analysing the content of major and trace elements as indicators of human activity on the site.

Soil samples were taken from spit 8 (c. 1.80m beneath the surface) in each excavated square. After cleaning the surface of the excavated area, a sample was taken from the centre of each quarter-square if the sediment was homogeneous. If any features were visible, separate samples were taken for every feature or layer. Sub-samples from the same contexts were then combined to eliminate any local variation.

Spit 8 was chosen because it is situated near the lower limit of the occupation surface. However, this choice was based on an educated guess. As yet, the vertical movement of prehistoric anthropogenic trace elements in soils is badly understood. In settlement contexts, it is mainly the distribution of phosphates that has been investigated (Stäuble and Lüning 1999; Lüning and Reich 2011; Weiner 2010: 59–61). The effects of different
soils and groundwater regimes have not been explored systematically. Therefore, in future the horizontal distribution of trace elements will be sampled in more detail. As the Neolithic surface is sloping to the East, the artificial horizontal spits may intersect different parts of the occupation surface.

The bulk content (%) of major and trace elements (Na, Mg, Al, P, S, K, Ca, Ti, Mn, Fe, Cu, Rb, Sr, Ba, Hg, Zr, and Sn) was determined using an X-ray fluorescent spectrophotometer. The determination of the concentrations of macro- and micro-elements in the soil was carried out by measuring the mass fraction of metals and metal oxides in powder samples. The soil samples were dried and ground to a particle size of about 50 microns. The ground sample (200mg) was then pressed into pellets and analysed using a spectrometer.

The inorganic phosphorus content was determined after extraction using a strong acid (2N HCl) at a soil-liquid ratio of 1:20 and determined colorimetrically through reaction with ammonium molybdate. It is possible to measure about 70-80% of the total phosphorus after this treatment.

Sulphur, inorganic phosphorus, potassium and calcium have high values in the area of the pit and of feature 2, which is probably a small pit (Figure 3). The sulphur and phosphates may have originated from rotting organic refuse. Ash is a possible source for S, K, Ca and P (Braadbaart et al. 2012: tab. 3). The calcium could also originate from decomposed bone. Most of the bones in the occupation layer and in the upper layers of features are badly preserved and often completely lacking in collagen. Spit 8 in fact contains the maximum number...
of preserved bones, while the number of most other materials peaks in higher layers. This, together with a lack of bones of small mammals or birds in the animal bone assemblage (El Susi 2017), hints at a considerable loss of bone. However, the pit does not show up in the strontium distribution.

Other elements, such as Al and Mg, show a regular W-E decline, which corresponds to the absolute height. The distribution is thus most likely related to groundwater action and probably postdates the archaeological deposits. The distribution of Fe₂O₃ shows a similar pattern, but the area of the pit and its environ has low values. This corresponds to the macroscopic observation that iron staining is less common in the anthropogenic sediments, which may relate to a different redox-potential. Most of the heavy elements, as well as sodium and magnesium, bear no relation either to features or to absolute height. Of course, they may reflect activities in the occupation layer or corresponding finds/concentrations, which are yet to be analysed.

Overall, the results are promising, but can only be fully interpreted once the excavation is finished. The exploratory 1m sampling grid is too coarse to catch small features like postholes, so we will try using a finer grid. However, worm casts and fossil polygonal cracks introduce a pattern of their own, which can easily mask small-scale anthropogenic signals. We will explore the use of a pXRF device in areas where we expect subsurface features that are not yet visible. This offers a reasonably fast way to analyse the sediment and could be of great help in the excavation and interpretation of comparable layers.

Soil biology

The analysis of soil microorganisms has been used successfully in the study of Medieval relic soils (Chernycheva et al. 2014, 2015 and 2016). We held out little hope of success in this much older sediment; however, preliminary studies have found soil microorganisms still to be present, albeit in lower concentrations.

The amount of lipolythic microorganisms was examined to identify fatty compounds introduced into the soil in the past. The determination of lipolythic microorganisms was performed using the plate count method. Briefly, soil samples (1g) were mixed with 10ml of 0.5% tetrasodium pyrophosphate, with the resulting suspension then being serially diluted: 1ml of each dilution was added to 9ml water and then poured into sterile Petri dishes containing (w/v): 0.5% polysorbate 20, 5% polysorbate 80, 1.0% peptone, 0.5% NaCl, 0.01% CaCl₂ and 2.0% agar. Soil samples plated on agar were incubated at 28°C for seven days.

While differentiating between vegetable and animal fats is not possible with this method, it still provides an important way of exploring the organic component of prehistoric refuse. The analysis revealed a concentration of lipolythic microorganisms around Pit 1. As the area above the dug feature was relatively poor in finds, this may indicate that it was once full, with the area being used to deposit organic refuse. This is supported by the presence of thermophilic bacteria.

Adaptation to a new type of environment

Tâșnad is located in the boundary region between the hills of Transylvania (Crișana) and the Great Hungarian
plain to the West. According to most Romanian authors (Lazarovici 1996, 1998; Virág 2008), the first Neolithic settlers in this area came from central Transylvania, with Gura Bacului (Lazarovici and Maxim 1995) representing one of the oldest known Neolithic settlements in the country (Luca 2011). In contrast, many Hungarian archaeologists favour a model of Neolithic colonisation from the South, following the course of the Tisa. Only a greatly increased number of ¹⁴C-dates combined with a detailed stylistic analysis of the pottery can help decide between these two possibilities. However, whichever route was followed, the settlers in Tăşnad and a number of comparable locations in the piedmont had to adapt to a new environment. The ‘Neolithic package’ ultimately derived from Western Asia was made up of cultigens and domesticated animals adapted to dry steppic conditions. In contrast, the Alföld, before the large scale drainage and meliorisation begun under Joseph II, was a patchwork of riverine woodlands, steppe and swamps (Feurdean et al. 2015; Magyari et al. 2010). Several sites in the Northern Alföld have already illustrated the great importance of hunting to the human diet in this area (Bartosiewiecz 2005; Kovács et al. 2010) as well as other areas (El Susi 2011; Orton 2008: fig. 5.9) and, as the work of Georgeta El Susi indicates (El Susi in prep.), this is also true for Tăşnad, where 42% of the identified bones are from wild animals. Both steppe (wild horse, wild ass) and hill species (brown bear) are present. If we receive the necessary funding, we plan to perform isotope analyses to obtain a better picture of the habitats of both domestic (cf. Knipper 2011) and wild animals.

Given the extreme rarity of charred plant remains, we had to turn to alternative sources of evidence for the environment and agricultural activities at Tăşnad – namely, phytoliths and the frequent plant impressions in the pottery. Phytolith samples have been taken systematically since 2015, but have not yet been analysed. The utility of plant impressions on the surface of pottery depends on their origin, i.e. whether they were caused by the use of organic temper, the accidental inclusion of plant remains present in the settlement for other reasons at the time the pottery was produced or the use of chaff and similar materials as a separating agent during the production process. This problem is being investigated by Bruno Vindrola as part of his PhD dissertation.

Mobility and social structure

Currently, genetic studies indicate a solution to the heated debate surrounding the mechanism by which agriculture spread to Europe in terms of population movement, given a strong genetic input from Southwest Asia in most early Neolithic populations. However, this does not explain the nature of this mobility. Demic diffusion (Ammerman and Cavalli-Sforza 1973), colonisation, leap-frog colonisation (see Forenbaher and Miracle 2005: tab. 1 for a useful overview) have been discussed as possible causative mechanisms.

Given the lack of formal cemeteries in the entire Starčevo-Körös-Criş (SKC) area, and the concomitant lack of human remains, genetics is unlikely to be of much help here. There are four skeletons from Tăşnad (Astalos and Virág 2006-2007: 79-80; and analysis currently in preparation by R. Pinhasi), but it is unclear how representative these and other isolated burials are. The isotope data for the LBK, commonly derived from either the Starčevo-Körös-Criş or the Starčevo culture alone (Bánffy 2006, 2014; Bánffy and Oross 2010)
indicate high individual mobility (Hofmann 2016), which may go a long way to explaining the extreme homogeneity of this culture over large areas. For the LBK, this high mobility is also reflected in the presence of different forming techniques and paste composition within the same settlement (Gomart 2014; Gomart et al. 2017). Corresponding studies for the SKC are being prepared by Sébastien Manem.

While individual mobility cannot yet be proven for the SKC, it should certainly be included in the list of possible mechanisms for the northward and westward spread of the culture complex. We are therefore looking for indications of variation within the settlement. Such variation can also provide indications about the organisation of the villages. Are land and other resources held in common, or controlled by individual households? Are artefacts manufactured together, or do individuals learn from family members?

Pottery, while the most frequent category of find, is unfortunately highly fragmented. In addition, the late Criş-pottery (phase IIIB/IV according to Lazarovici 1979) is only very sparsely decorated. Both factors limited the scope for stylistic analysis. Consequently, we concentrated on paste composition and surface treatment. During excavation, we noticed that a pottery concentration would very often be dominated by sherds of one colour and similar thicknesses, i.e. probably the remains of a single pot. In all cases, however, they were accompanied by other artefacts like chipped stone, ground stone and burnt clay, as well as a few sherds of differently coloured pots. It appears that the breakage of a particular pot had initiated a general clean-up. The assemblage would therefore represent the taphocoenosis (Sommer 1991) present at one specific moment in time on the floor of an individual house. The colour of the pottery ranges widely, from light grey to orange, red, brown, dark grey and black. Pottery surface colour rarely receives much attention, but we were interested in whether the colour corresponded with vessel shape/pottery use and was caused by clay selection or paste preparation, or whether it was intentionally created during the production process through the addition of pigments or a manipulation of the firing process. If colour is related to the use of a vessel, there should be a correlation between shape/size, temper and colour. If pigments are used, this could indicate personal or household preferences.

Pottery

Composition

In a pilot study, petrographic thin section analysis (Quinn 2009, 2013; Whitbread 1995, 2001) was carried out on 13 samples (Figure 4). The samples are characterised by a soft fine fabric (apart from TS 9 and 10, which have a thicker wall and are coarser), with small white and red inclusions and numerous ‘channel’ and ‘vesicle’ type pores. The colour of the samples varies from light brown to red and very dark grey. Particles previously identified as grog by the archaeologists turned out to be natural clay pellets contained in the clay.

Viewed under the microscope, the 13 specimens analysed do not display any significant compositional variability (Figure 5). Therefore, it was not possible to subdivide them into meaningful separate petrographic groups. Samples are characterised by the presence of equant and elongate sub-angular inclusions of quartz, polycrystalline quartz, feldspars, muscovite and, less frequently, chert, amphibole, clay pellets and opaque minerals. More rarely, fragments of metamorphic rocks, probably schist, occur. In all the specimens, the average grain size of the inclusions is around 0.4mm and the maximum size is 0.8mm, while TS 9-10 shows a coarser texture (average 0.6mm, maximum 1.2mm). All specimens apart from TS 3 are characterised by organic temper, which is particularly abundant in samples TS 1, 5, 6, 11, 12 and 13 (Figure 5). The bimodal distribution of the inclusions characteristic of coarser samples (TS 9 and 10: Figure 5e-g) could indicate tempering with a material derived from metamorphic rocks, probably schist.

The matrix of the majority of samples is optically active (Quinn 2013: 190-198). This indicates low firing temperatures. Some samples (TS 1, 4, 7 and 8) have a matrix that is optically inactive, but these may have been re-fired in a destruction event, as indicated by several extremely highly fired pieces of daub from UCL Trench 1 (Figure 6), probably the result of a house fire that reached temperatures of well over 1100°C, possibly 1200°C or even higher (Veronesi 2014).

The analysis of clay samples collected c. 15m to the east of UCL Trench 1 shows that suitable clay sources for pottery making whose compositional characterisation is compatible with that of the samples analysed were available in the immediate vicinity of the settlement. These alluvial clay samples are characterised by the presence of a coarser sandy fraction that includes quartz, chert, muscovite, amphibole and rare fragments of metamorphic rocks (Figure 4h). Sources of tertiary clay, used until recently for brick making and still used for mud-bricks, exist in several locations on the hilltops west of the town of Tâșnad (Marinescu et al. 1967).

While it would require a larger number of samples to monitor the compositional and technological variability in pottery paste preparation at the site, we can still make some preliminary observations. First of all, it is clear that the organic material was the most common temper used in Tâșnad. Surface impressions on other
The results suggest a differentiation of ceramic paste according to vessel thickness and form, but no correlation between colour and paste. The slight differences in the ceramic matrix could have been caused by the use of different clay sources, but in an alluvial environment the differences are too slight to allow us to make any definitive statement. More analysis, comparing pottery from different squares, is being conducted by Silvia Amicone and Johannes Seidler (University of Tübingen).

In order to explain the observed colour variability it is important to ascertain whether this pattern reflects the original repertoire of colours the producers wanted to achieve or if secondary factors are responsible for the pattern detected in the archaeological record.

Pottery colour is primarily determined by the choices taken by the artisans during the production process (e.g. Rice 2015: 276-290). First of all, the selection of clay plays a very important role in determining the vessel’s colour. Different methods of processing clay (e.g. levigation or the addition of temper) can also alter the compositional characteristics of the original clay and have an impact on the final colour of the pottery. Very importantly, surface treatments like the addition of a slip or pigment can also have an impact (Cuomo di Caprio 2007: 305-376).

The most important factor is probably the firing process (Rice 2015: 289). It is during this phase of the production process that pottery acquires different colour according to the properties of the raw material and the firing technique employed. The amount of oxygen present and the temperature reached are the determining factors here. For example, firing under oxidising conditions will result in light coloured pots. When there is a lack of oxygen, the fuel does not burn completely and the atmosphere becomes full of free (elemental) carbon, which combines with oxygen to produce CO. Under these conditions, dark iron oxides are formed (Jones 1986: 762-763). Another way to obtain black colours is the introduction of carbon during the firing process (smudging; Jones 1986: 764).

However, it is important also to take into consideration other factors that may have altered the original surface colour of the pottery. Firstly, there is the possibility of erosion. The colour of the body of the pot can differ from a slip that became removed by erosion or stick to the ground when removed, as is common in Tășnad. More severe erosion can remove parts of the surface of the pot proper and expose the core, which is often less oxidised and thus darker. We have uncovered some sherds with different surface colours that were clearly caused by the partial erosion of the surface. Experiments are currently under preparation to elucidate the change of colour and outer appearance of pottery due to abrasion using badly provenanced sherds. The colour of the sherds from UCL Trench 1 also needs to be compared with that of better preserved assemblages from the same site located at slightly higher elevations.

In addition, pots fired in an open fire can have several surface colours (‘flaming’), which is caused by different exposure to oxygen and direct contact with the flames. Overall, this phenomenon seems to be quite rare in the Tășnad assemblage, but, again, this observation is in need of careful study and quantification. A preliminary firing experiment with pots made of local clay in shallow pits produced pots with dark red and black surfaces that were far more mottled than the archaeological samples. Further firing experiments in more controlled conditions will be conducted in order to find out whether all the surface colours observed
Figure 4. Thin section photomicrographs of selected ceramics from Tâșnad analyzed in this study. a) TS 8: organic tempering (XP). b) TS 8: organic tempering (PPL). c) TS 3: non tempered (XP). d) TS 5: abundant organic tempering (PPL). e) TS 10: mineral and organic tempering (XP). f) TS 10: mineral and organic tempering (PPL). g) TS 10: metamorphic rocks (XP). h) Geological sample (XP). Image width = 3mm (a, b, c, g, h); except d, e, f = 6mm.
can be produced with local clays using different firing conditions alone. This is supported by the analysis of sherds from other sites. For example, Luca and Tudorie (2012: 23) report finding only 7% of flamed sherds from Săliștea (Cioara) in Alba County. Hence, the firing of prehistoric pots was better controlled than commonly believed. However, we also need to determine how deep into the matrix the effects of flaming reach, something which determines the effects of subsequent erosion.

Cooking pots can also change colour during their use on the hearth. In this case, as with flaming, change is restricted to the outer surface (Forte et al. 2018). Finally, the original colour of pottery could be altered by secondary firing during random or intentional destruction episodes – for example, a house burning down. The presence of over-fired sherds and burnt clay in the archaeological record can be seen as indicative of this phenomenon.

We also plan to analyse the pottery surfaces to ascertain whether pigments were used to produce the different colours observed. Pigments used in pottery painting have been studied mainly using ED-XRF spectrometry (López-Montalvo et al. 2014; Olivares 2013; Roldán 2014), SEM-EDS, X-Ray diffraction or Raman spectrometry (e.g. Buzgar et al. 2013 for the area under consideration). The use of pigments in slips to colour the whole surface of a pot could be demonstrated by using the same technique; however, this has not yet been studied systematically. With most possible admixtures, the way the pot is fired substantially affects the results.

Phytoliths

Ongoing work on microfossil extraction (Lionello Morandi, University of Tübingen) also revealed the
we can return to our seemingly simple main question. In battery of subsidiary methodological problems before realise that we need to dig differently and solve a whole national schools of excavation. Very often we must first adopted is rarely changed, as evidenced by the various ideally to the whole site. An excavation method once on the application of a consistent excavation method, badly with the archaeological process, which depends the hermeneutic circle of any empirical methodology sits rationale behind scientific protocols. Most frustratingly, we discover them, we tend to become overenthusiastic of methods already in existence in other disciplines. Once we have systematically collecting modern dung samples in order to investigate the identifiable plants and their potential seasonal variation in comparison with the current vegetation (cf. Verges et al. 2016).

Conclusion – does it work?

All in all, the use of archaeometry during the excavation has opened up intriguing new vista. The main difficulty seems to be that archaeologists are often simply not aware of methods already in existence in other disciplines. Once we discover them, we tend to become overenthusiastic due to a lack of understanding of the limitations of said methods. Scientists seem very reluctant to give definite answers, but the same is probably true the other way around. In addition, archaeologists do not understand the rationale behind scientific protocols. Most frustratingly, the hermeneutic circle of any empirical methodology sits badly with the archaeological process, which depends on the application of a consistent excavation method, ideally to the whole site. An excavation method once adopted is rarely changed, as evidenced by the various national schools of excavation. Very often we must first realise that we need to dig differently and solve a whole battery of subsidiary methodological problems before we can return to our seemingly simple main question. In the case of the Tăşnad excavation, this probably means that, drawing on all that we have learned, we will need to begin a second trench, collect all the samples and data we need and continue to discover new problems and questions. Starting this process earlier rather than later has proved extremely beneficial, if occasionally exasperating.

Works cited

Astaloș, C. and Sommer, U. 2015. The village and the house in the early Neolithic. Research into activity areas and rubbish disposal at the late Criș settlement of Tăşnad (Satu Mare County, Romania). In C. Virág (ed.), Neolithic cultural phenomena in the upper Tisa Basin: 75-96. Satu Mare: Editura Muzeului Sătmărean.

Bridging Science and Heritage in the Balkans

Pages presented in honour of Professor David Peacock’s contributions to archaeological ceramic studies (Southampton Monographs in Archaeology New Series 6): 57-73. Oxford: Oxbow.

Vrydaqhs, L., De Paepe, P., Rutten, K. and Haerinck, E. 2014. Regional exchanges in Southeastern Arabia during the Late Pre-Islamic Period: Phytolith analysis of ceramic thin sections from ed-Dur (UAE). In M. Madella, C. Lancelotti and M. Savard (eds), Ancient plants and people: contemporary trends
