Obsidian Across the Americas

Compositional Studies Conducted in the Elemental Analysis Facility at the Field Museum of Natural History

Edited by
Gary M. Feinman and Danielle J. Riebe
Contents

List of Contributors... ii
List of Figures ... iii
List of Tables... v

Chapter 1. Chipping Away at the Past: An Introduction ..1
 Danielle J. Riebe and Gary M. Feinman

Chapter 2. Extraordinary Claims Require Extraordinary Evidence: The Role of Inter-Laboratory Collaborations in a Lake Huron Archaeological Discovery ..7
 Danielle J. Riebe, Ashley K. Lemke, Jeffrey R. Ferguson, Alex J. Nyers, Elizabeth P. Sonnenburg, Brendan S. Nash, John M. O’Shea

Chapter 3. A (Near) Comprehensive Chemical Characterization of Obsidian in the Field Museum Collections from the Hopewell Site, Ross County, Ohio ...17
 Mark Golitko, John V. Dudgeon, Claire Stanecki

Chapter 4. Emergent Economic Networks in the American Southwest...45
 Danielle J. Riebe, Gary M. Feinman, Jeffrey R. Ferguson

Chapter 5. Changing Patterns of Obsidian Procurement in Highland Oaxaca, Mexico58
 Linda M. Nicholas, Gary M. Feinman, Mark Golitko

Chapter 6. Instrument Source Attributions of Obsidian Artifacts from Tikal, Guatemala76
 Hattula Moholy-Nagy

Chapter 7. Classic Maya Obsidian Blades: Sourced from Afar and Produced in the Local Marketplace........87
 Bernadette Cap

Chapter 8. Macroscale Shifts in Obsidian Procurement Networks Across Prehispanic Mesoamerica98
 Gary M. Feinman, Linda M. Nicholas, Mark Golitko

Chapter 9. The Characterization of Small-Sized Obsidian Debitage Using P-XRF: A Case Study from Arequipa, Peru ... 124
 David A. Reid, Patrick Ryan Williams, Kurt Rademaker, Nicholas Tripcevich, Michael D. Glascock

Chapter 10. Obsidian Utilization in the Moquegua Valley through the Millennia ...148
 Patrick Ryan Williams, David A. Reid, Donna Nash, Sofia Chacaltana, Kirk Costion, Paul Goldstein, Nicola Sharratt

Chapter 11. Concluding Thoughts: Open Networks, Economic Transfers, and Sourcing Obsidian162
 Gary M. Feinman and Danielle J. Riebe
List of Contributors

Gary M. Feinman, Field Museum of Natural History, Chicago, IL, United States of America

Danielle J. Riebe, University of Georgia, Athens, GA, United States of America

Ashley K. Lemke, University of Texas at Arlington, Arlington, TX, United States of America

Jeffrey R. Ferguson, University of Missouri, Columbia, MO, United States of America

Alex J. Nyers, Northwest Research Obsidian Studies Laboratory, Corvallis, OR, United States of America

Elizabeth P. Sonnenburg, Lake Superior National Marine Conservation Area, Parks Canada, Canada

Brendan S. Nash, Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI, United States of America

John M. O’Shea, Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI, United States of America

Mark Golitko, University of Notre Dame, Notre Dame, IN, United States of America

John V. Dudgeon, Idaho State University, Pocatello, ID, United States of America

Claire Stanecki, University of Notre Dame, Notre Dame, IN, United States of America

Linda M. Nicholas, Field Museum of Natural History, Chicago, IL, United States of America

Hattula Moholy-Nagy, Museum of Anthropology and Archaeology, University of Pennsylvania, Philadelphia, PA, United States of America

Bernadette Cap, University of Texas at San Antonio, San Antonio, TX, United States of America

David A. Reid, University of Illinois at Chicago, Chicago, IL, United States of America

Patrick Ryan Williams, Field Museum of Natural History, Chicago, IL, United States of America

Kurt Rademaker, Michigan State University, East Lansing, MI, United States of America

Nicholas Tripcevich, University of California Berkeley, Berkeley, CA, United States of America

Michael D. Glascock, University of Missouri-Columbia, Columbia, MO, United States of America

Donna Nash, The University of North Carolina at Greensboro, Greensboro, NC, United States of America

Sofia Chacaltana, Universidad Antonio Ruiz de Montoya, Pueblo Libre, Peru

Kirk Costion, Mesa Community College, Mesa, AZ, United States of America

Paul Goldstein, University of California San Diego, San Diego, CA, United States of America

Nicola Sharratt, Georgia State University, Atlanta, GA, United States of America
List of Figures

Figure 2.1. Location of the geological source in the American Northwest with a close-up map of the Lake Huron Basin in the American Midwest. The archaeological materials were recovered from the DA-1 excavation unit. ...12

Figure 3.1. Location of Hopewell Mounds and other Middle Woodland and Late Archaic sites with relevant occurrences of obsidian. Percentages of identified sources are indicated. Open circles represent sites with obsidian from which no source assignments are reported. Data are taken from DeBoer (2004), Hughes (2006), Bucher and Skinner (2002), Mangold and Schurr (2006) and Hughes and Fortier (2007), except for Hopewell Mounds, which is based on the data reported in this chapter. Locations of obsidian sources in the continental United States are those reported by Northwest Research Obsidian Laboratory (http://obsidianlab.com/universe.html). ...19

Figure 3.2. Bivariate plots showing results of obsidian sourcing compared to sources in Yellowstone National Park (Obsidian Cliff) and southern Idaho. Black dots are Hopewell objects, gray dots are obsidian raw material samples. Ellipses indicate 95% confidence intervals around source samples. ...24

Figure 4.1. Sites included in the study with the relative location for each of the obsidian geological sources identified in the study (map adapted from geological source map in Shackley 2005). ...47

Figure 4.2. Sites included in the study with subregions identified and the relative location for each of the obsidian geological sources identified in the study (map adapted from geological source map in Shackley 2005). ...51

Figure 4.3. Map of Mesoamerica showing location of principal obsidian sources, sites with well-dated sourced obsidian in Oaxaca, and other sites mentioned in the text. See Figure 2 for sites in the Valley of Oaxaca, the Sierra Norte, the Mixe region, and Nejapa. ...59

Figure 4.4. Map of highland Oaxaca showing sites with well-dated sourced obsidian and probable trade routes into the Valley of Oaxaca. ...61

Figure 4.5. Sourced obsidian over time in the Valley of Oaxaca. Graph does not include sources that do not form at least 1% of the assemblage in at least one period (see Table 5.4 for full list of sources for each time period; see Table 5.1 for explanations of source abbreviations.) ...63

Figure 4.6. Comparison of the number of obsidian sources identified at the same Lowland Maya site by visual and instrument analysis. Black bars were visually attributed, white bars were attributed by instrument. (Redrawn from Moholy-Nagy et al. 2013: Figure 1.) ..77

Figure 6.1. Map of Mesoamerica with the approximate locations of the geological sources of obsidian identified at Tikal. (Redrawn from Moholy-Nagy et al. 2013: Figure 1) ...66

Figure 6.2. Map of Mesoamerica with the approximate locations of the geological sources of obsidian identified at Tikal. (Redrawn from Moholy-Nagy et al. 2013: Figure 1) ...66

Figure 6.3. Location of obsidian sources in relation to the site of Buenavista. ...66

Figure 6.4. Excavation Area 1 within the Buenavista marketplace showing the distribution of obsidian debitage. 90

Figure 6.5. Location of obsidian sources in relation to the site of Buenavista. ...92

Figure 6.6. A set of concentric zones superimposed on a map of central Tikal extending to the boundaries of the Tikal National Park. Zones 02-26 each have a half-km radius, while Zone 01, which encompasses most of epicentral Group 5D-2, has a radius of 0.25 km. (Diagram by the author.) ...84

Figure 7.1. Location of Buenavista del Cayo within the Mopan River valley, Belize. ...88

Figure 7.2. Map of the site center of Buenavista. ...89

Figure 7.3. Location of the marketplace in the Buenavista East Plaza showing clusters of artifacts by material type. 89

Figure 7.4. Excavation Area 1 within the Buenavista marketplace showing the distribution of obsidian debitage. 90

Figure 7.5. Location of obsidian sources in relation to the site of Buenavista. ...92

Figure 7.6. Location of obsidian sources in Mesoamerica and sites with sourced obsidian included in the database. 99

Figure 8.1. Network graphs for Period 1 (~1600/1500–1200 BC): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...102

Figure 8.2. Network graphs for Period 2 (1200–900 BC): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...104

Figure 8.3. Network graphs for Period 3a (900–600 BC): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...106

Figure 8.4. Network graphs for Period 3b (600–300 BC): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...108

Figure 8.5. Network graphs for Period 4a (300 BC–AD 1): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...109

Figure 8.6. Network graphs for Period 4b (AD 1–300): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...111

Figure 8.7. Network graphs for Period 5 (AD 300–600): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...112

Figure 8.8. Network graphs for Period 6 (AD 600–900): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...114

Figure 8.9. Network graphs for Period 7 (AD 900–1200): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...116

Figure 8.10. Network graphs for Period 8 (AD 1200–1520): a, one-mode graph; b, nodes positioned geographically; c, two-mode graph. ...117

Figure 9.1. Base map of south-central Peru showing major and minor obsidian sources and the study region. ...125

Figure 9.2. Map of study area with archaeological sites. ...127

Figure 9.3. Size plots (minimum dimension of length or width) by artifact type analyzed by pXRF. Center line shows the mean with outlier indicated by individual points. ...128
Table 2.1. Table adapted and updated from Glascock 2010 comparing X-ray fluorescence and neutron activation analysis9
Table 2.2. Elemental concentrations for all compositional analyses conducted on the archaeological specimens and the geological samples. All trace element values reported in parts per million (ppm). NM = Not Measured..................11
Table 3.1. Results of repeat (60 replicates) analyses on solid obsidian sample BRK001 and certified reference materials RGM-2 and NIST278. ...26
Table 3.2. Source assignments by object category. ...26
Table 4.1. Summary of the periods included in this study with the total number of sites and obsidian artifacts associated with each period. ...47
Table 4.2. Sites included in the study arranged by subregion and period with the total number of obsidian artifacts for each site and their classification of local, non-local, or unsourced. ...48
Table 4.3. Sites included in the study arranged by subregion and period with the obsidian artifacts classified by source (TMC = all Mule Creek subsources; AW = Antelope Wells; TJEM = all Jemez Mountain subsources; CC = Cow Canyon; GC = Gwynn Canyon; LV = Los Vidrios; TMT = all Mount Taylor subsources; TMVF = all Mount Floyd Volcanic Field subsources (including Partridge Creek); TSF = all San Francisco Volcanic Field subsources; SSM = Saucedo Mountains; ST = Sand Tanks; SUP = Superior; TANK = Tank Mountains). Table 4.4. Sites included in the study arranged by subregion and period with distance to obsidian geological sources identified at each site. ...49
Table 5.1. List of sources found at sites in highland Oaxaca ...59
Table 5.2. Chronology and period designations ...60
Table 5.3. Summary statistics for highland and valley sites ..60
Table 5.4. Sourced obsidian in the Valley of Oaxaca by period. * see Table 1 for explanations of source abbreviations63
Table 5.5. Sourced obsidian at Formative sites in highland Oaxaca, grouped by period and subregion64
Table 5.6. Sourced obsidian at Classic and Postclassic sites in highland Oaxaca, grouped by period and subregion67
Table 6.1. Tikal chronology. ..72
Table 6.2. Highang Guatemalan and Central Mexican sources identified in the analyzed sample. ...78
Table 7.1. Comparison of obsidian density at the Buenavista marketplace, workshops, and households in the Mopan River valley. ..91
Table 7.2. Summary of pXRF results of Buenavista marketplace obsidian assemblage tested at the Field Museum’s Elemental Analysis Facility. ...91
Table 7.3. Types of debitage present in the Buenavista marketplace obsidian production zone ...92
Table 7.4. Count and density of obsidian blades present in the Buenavista Southern Settlement zone houses (after Peuramaki-Brown 2012: Table 7.4.) ..93
Table 7.5. Summary of EDXRF results from household studies at Buenavista and Guerra (after Peuramaki-Brown 2012: 7.4; Trütt 1997: Table 9, 10) ...94
Table 8.1. Mesoamerican sources present at sites in the obsidian archive ..100
Table 8.2. Time blocks included in the Mesoamerican obsidian archive ...100
Table 8.3. Summary statistics by time period (* does not include sites with <5 pieces, which are excluded from network analysis) ..101
Table 8.4. Movement of obsidian between western and eastern Mesoamerica ..103
Table 9.1. Number of obsidian artifacts characterized by pXRF by lithic type ..128
Table 9.2. Relative standard deviation (RSD) over a two-year instrument operating period ...130
Table 9.3. Geologic source characterization of obsidian debitage by count (N)..133
Table 9.4. Geologic source characterization of obsidian debitage by weight (g)..133
Table 10.1. Obsidian sources by site (excavated sites without sourced obsidian: Capanto, Las Peñas, Colorado Mogoté, Sabaya, Torata Alta, Camata, Tacahuay, and Punta Picata); FM: Formative Period, MH: Middle Horizon, LIP: Late Intermediate Period, LH: Late Horizon ..150
Table 10.2. Obsidian Average weight, Density and Ubiquity in several of the collections excavated by the authors (not represented: Omo and Chen Chen) ..150

Appendix 3.1 PXR measurements (including the instrument used) listed by Field Museum inventory number and morphological classification and description. Provenience information is provided when available. ..31
Appendix 4.1 Breakdown of the geological obsidian sources, sites, sourced materials, and previous publications from which data was mined. ..54
Appendix 9.1 Obsidian artifact and geologic specimen description and parts per million (ppm) elemental concentrations138
Chapter 1

Chipping Away at the Past: An Introduction

Danielle J. Riebe

University of Georgia

Gary M. Feinman

Field Museum of Natural History

Abstract

Key to the analysis of the archaeological and geological materials presented in this volume is the Elemental Analysis Facility (EAF) and the instruments housed in the EAF at the Field Museum of Natural History. This center has grown over the past twenty years becoming a leader in compositional studies of archaeological specimens. In particular, obsidian has been intensively analyzed by researchers using various compositional techniques. While many volumes have focused on the nature of obsidian and/or its use and circulation in the past, this volume uniquely presents the research conducted on obsidian, both geological and archaeological materials, from across the Americas using the equipment housed in the EAF at the Field Museum of Natural History. In so doing, it provides a snapshot into the current status and contributions of obsidian sourcing research toward understanding trade, exchange, and mobility in the precolumbian American past.

Introduction

For the past two decades, the Field Museum of Natural History has been a leader in the analysis, conservation, and preservation of archaeological and museum collections. There are an immeasurable number of researchers who have walked the museum’s halls, collaborated with museum scientists and curators, and advanced our understanding of the past and helped preserve the future through a diversity of research projects. However, of particular note are those researchers and projects that have relied on the Elemental Analysis Facility (EAF) at the Field Museum.

Beginning as a casual lunch conversation between Drs. Laure Dussubieux and Heather Walder about the growing number of unpublished EAF research, the discussion has resulted in the compilation of these analytical projects in the form of two volumes, with one more in the pipeline. The first volume, edited by Dussubieux and Walder (2022), focuses on the analysis of glass bead artifacts using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) laboratory at the EAF. This innovative volume included archaeological beads from around the world, and their analysis helped researchers reconstruct various chronological developments and human interactions. To build collaborative efforts, Dussubieux and Walder hosted a three-day workshop that allowed scholars to present their laboratory results, receive feedback from their colleagues, and incorporate the feedback into their final manuscripts. In a similar vein, the second volume, edited by Feinman and Riebe (this volume), started with a similar workshop on October 8, 2021, in which all authors presented their research in a “lightning-round” format and received feedback from the other participants and the editors. On February 4–5, 2022, a third workshop was held for the authors of the last publication that will focus on Andean ceramics and will be edited by Drs. Ryan Patrick Williams, M. Elizabeth Grávalos, and Luis Muro Ynoñán. Where the current volume differs from these other EAF compilations, however, are the materials studied and the analytical methods used. Obsidian, its origins, circulation, and use, are the focus of this volume, with most of the analyses conducted using the portable X-ray fluorescence (pXRF) devices in the EAF.

History of Elemental Analysis Facility

The origins of the EAF date to the early 2000’s with Dr. Patrick Ryan Williams as the director. In 2005, the EAF became more firmly established as a leading analytical facility with the hire of research scientist and manager, Dr. Laure Dussubieux. Working together, Williams and Dussubieux have built the EAF labs – including the pXRF Lab, LA-ICP-MS Lab, and Optical Mineralogy Lab – through a series of granting initiatives from both internal sources (Negaunee Fund, Grainger Scientific
Promotion of the EAF goes beyond the classroom to the public at large. The museum hosts a bi-annual event known as Museum Nights, and every year the EAF has a booth for the public to learn more about the benefits of the facility. Often the pXRF devices are on display, and interested people can have objects tested to determine their composition and sometimes their authenticity. In 2018, Dussubieux, along with Drs. Carla Klehm and Danielle Riebe, organized a formal workshop that was open to the public and presented a wide range of compositional research conducted in the EAF. Similar platforms for research dissemination are intended to be held in the future.

The EAF, and those running it, have sought to create more than just a research center, and as the EAF has grown, so too has its impact. Over the past twenty plus years, the EAF has been instrumental in building collaborations, educating the public, and training future scientists. By investing and developing the labs associated with the EAF, there has been increased interest among future scientists. By investing in and developing the labs associated with the EAF, there has been increased interest among future scientists. By investing in and developing the labs associated with the EAF, there has been increased interest among future scientists.

Discussion of Instrumentation

As previously mentioned, the EAF labs consists of the LA-ICP-MS Lab, the pXRF Lab, and the Optical Mineralogy Lab. The former two labs have been highly instrumental in compositional studies of archaeological and geological specimens. Selection of the method used to analyze the materials often comes down to several variables, including sample size, portability of sample or exportability from country of origin, number of and/or specific elements necessary to generate a distinctive compositional signature, the need for a minimally destructive vs. non-destructive technique, and cost. Since the early 2000s, when the EAF was first established, instrumentation has changed, and below details a brief description of those devices housed in the LA-ICP-MS and pXRF laboratories.

LA-ICP-MS

The first major instrumentation grant for the EAF was funded by the National Science Foundation (BCS 0320903) and secured in 2003 by Drs. Patrick Ryan Williams, Gary Feinman, Menakshi Wadwha, and Phil Janney for a mass spectrometer and a scanning electron microscope (SEM). The original mass spectrometer purchased for the lab was a Varian Ulramass Quadrupole LA-ICP-MS with a New Wave UP213 system. While the samples could be introduced to the system as a liquid, solid sample introduction relied on specimens approximately smaller than 5cm in order to fit in the analysis chamber. This greatly limited the materials that could be studied, so to expand the abilities of the equipment and to allow larger specimens to undergo solid state sampling, collaborative efforts were made to create a modified adaptable chamber that utilized a New Wave UP266 laser ablation system.

After receiving funding in 2015, in 2016 a new mass spectrometer was purchased to replace the original. The Thermo ICAP Q quadrupole ICP-MS continued to operate with the New Wave UP213 laser ablation system, and Dussubieux worked to ensure that results generated between the old and new mass spectrometers were comparable. As before, samples could be introduced into the ICP-MS either as a vaporized solid or in a liquid state.

The LA-ICP-MS analytical approach produced reliable measurements for over 50 elements. While considered a minimally destructive technique, solid ablation would result in sampling craters not visible to the naked eye. At the Field Museum, LA-ICP-MS has been used to analyze non-archaeological materials (Cook et al. 2006), but has been heavily relied upon to study archaeological materials (Dussubieux et al. 2016), including ceramics or other clay objects (Dussubieux et al. 2007; Golitko et al. 2016; Kreiter et al. 2014; Levine et al. 2013; Niziolek 2013; Piscitelli et al. 2015; Riebe 2021; Riebe and Niziolek 2015; Riebe et al. in press; Sharratt et al. 2009, 2015; Vaughn et al. 2011; Williams et al. 2019a, 2019b), pigments (Bonjean et al. 2015; Halperin and Bishop 2016), metals (Dussubieux 2007; Dussubieux et al. 2008), stone (Goemaere et al. 2013; Golitko and Terrell 2012; Speer 2014), and glass (Dussubieux et al. 2008, 2009, 2010; Robertshaw et al. 2009, 2010; Schibille 2011; Walder 2013; Walder et al. 2021).
Throughout the operation of the EAF, a number of different pXRF devices have been purchased and used for both conservation and research purposes, with the first device being added to the EAF around 2007 with funding from the Grainger Scientific Fund. Later additional pXRF instruments would be secured with Negaunee funding. Generally, pXRF can reliably measure between 8–15 elements, however, the number and the specific measured elements vary depending on the instrument. The aspect that makes this device so appealing resides in its portability. This enables researchers to take the device to different countries and/or to the field, conduct analyses on materials in situ, and/or study those materials that cannot leave the country.

In total, four different pXRF devices have been housed in the EAF pXRF Laboratory, including an Innov-X, a Bruker TRACER III-V, a Bruker TRACER III-SD, and a Niton XL3t 950 GOLDD+. While these devices also have been used to study ceramics (Sharratt et al. 2019; Williams et al. 2012) and metals (Dussubieux and Walder 2015), a majority of the compositional studies utilizing the pXRF instruments in the EAF have focused on volcanic materials, such as basalt (Hastorf et al. in press; Januske and Williams 2016; Januske et al. 2012; Palumbo et al. 2015; Williams et al. 2015) and obsidian (Bélisle et al. 2020; Feinman et al. 2013, 2018, 2019a, 2019b; Golitko and Feinman 2015; Golitko et al. 2010, 2012; Meierhoff et al. 2010; Millhauser et al. 2011, 2015; Moholy-Nagy et al. 2013; O’Shea et al. 2021; Riebe 2018, 2019, 2021; Riebe et al. 2018, in press; Ruka et al. 2019).

Volume Contributions

The recent EAF-focused volume (Dussubieux and Walder 2022), as well as the current one, illustrate how integral the EAF has been in the lives and research of the contributors. Most of the chapters in this volume are co-authored with collaborators spanning the globe. Additionally, several of the authors (Chacaltana, Golitko, Reid, Riebe, and Sharratt) began as graduate students in the EAF and now are established research scientists. Overall, the Field Museum, its collections, and the EAF have offered researchers the opportunity to advance new lines of research, specifically as they relate to networks and the movement of people and goods. Many of the contributions in the volume highlight the reliance on existing collections at the Field Museum or other collaborating institutions, as well as the development of new investigatory methods. Together, the chapters explore a variety of regions, time periods, and topics, but all contribute to the advancement and development of anthropological research, focused on trade, exchange, and mobility, through compositional studies. Specifically, this volume presents the results of compositional studies conducted in the pXRF Laboratory of the EAF at the Field Museum and focuses on geological and archaeological obsidians from across the Americas. Although numerous techniques are available for compositionally studying obsidian (see Chapter 2 for further discussion), pXRF is an expedient and efficient technique for sourcing the geological material. From utilitarian to ornamental, obsidian has been used by peoples for thousands of years. While the material is unique in terms of its composition as a volcanic rock, its acquisition, use, and alteration by people is truly what makes the silicious object of remarkable importance for archaeologists.

The volume is divided into three sections based on geography (North America, Mesoamerica, and South America), and the chapters cover a wide breadth of archaeological topics. Several chapters deal with obsidian procurement patterns in specific regions (see Nicholas et al. – Chapter 5; Williams et al. – Chapter 10) or across vast expanses of land (Golitko et al. – Chapter 3; Riebe et al. – Chapter 4; Feinman et al. – Chapter 8). Other chapters focus on individual sites to reconstruct changes in procurement patterns and intra-site material distribution (see Moholy-Nagy – Chapter 6), as well as highlight the role of marketplaces in the manufacture and distribution of finished goods (Cap – Chapter 7). Finally, several chapters focus on issues related to further developing archaeometric research through increased inter-laboratory collaborations (see Riebe et al. – Chapter 2) and the improvement of analytical techniques (see Reid et al. – Chapter 9). Together, the case studies in the volume explore the ways in which obsidian analyses have been used to investigate multiscalar interactions, socio-economic exchanges, and socio-cultural developments in the past (see Chapter 11 for further elaboration). Several chapters (especially 4 and 8) highlight the great potential of expanded sample sizes that can be achieved through the use of pXRF. Large samples allow analysis to extend beyond presence-absence observations and to reveal more detailed patterns of quantitative variation. As technology continues to advance, so too will the methods used by researchers to study the archaeological record. In that sense, it is fascinating to view the tools of today as a means to study the tools of the past.

Bibliography

